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ABSTRACT

An investigation into position-based visual servoing through end-point open-loop control was con-

ducted for estimation of the three-dimensional position and yaw orientation of a moving target using

a single camera, where a Bitcraze Crazyflie 2.1 quadrotor then tracked this position and yaw orienta-

tion autonomously. Moreover, inexpensive and low-end hardware with marginal computational effort

was used in the form of a Raspberry Pi Zero W 1.1 and Raspberry Pi Camera Module 2.1 for image

processing with OpenCV to utilise computer vision techniques. Comparing grayscale and colour pro-

cessing for initial target detection, it was evident that grayscale processing allowed for an increased

frame rate compared to colour processing by an average percentage difference of 23.2% while also

eliminating more background noise for a better interpretation of the target. During the implementa-

tion, it was found that the most satisfactory resolution was 160px by 120px for lightweight processing,

where the capability to generate setpoints for the quadrotor was at a frequency of 30.1Hz. The pinhole

camera model was also validated and successfully implemented at a resolution of 160px by 120px

which resulted in a focal length of 113.5px found through experimental calibration. This allowed for

the pinhole camera model to be used to develop a control script to reconstruct the state of the target

relative to the camera with the centroid of the target providing latitude and longitude coordinates, area

of the target providing the altitude of the camera, and rotation providing the yaw orientation when

using a disproportioned marker. With this information, the quadrotor was able to successfully mir-

ror the translational and rotational motion of the target while maintaining the altitude of the camera.

Over eight independent tests, the real-time effectiveness was captured by a Qualisys motion capture

system and exhibited an average lag of 0.732s, average position deviations of 83.4mm, minimum yaw

orientation deviation of 9.54o, and maximum yaw orientation deviation of 9.87o. However, if the

average lag is compensated in each test, the average position deviation reduces to only 54.0mm, while

the minimum and maximum yaw orientation deviations reduce to only 4.76o and 4.46o respectively.

An altitude could also be maintained effectively, where the quadrotor only drifted by an average of

3.75% downwards or 3.98% upwards before returning to the correct altitude.
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1 INTRODUCTION

In industries requiring dynamic surveillance, inspection, or exploration, it is often useful to accurately

track moving targets with an unmanned aerial vehicle (UAV) using visual servoing. These industries

include activities involving photography, cinematography, traffic and transportation, surveying, map-

ping, search and rescue, navigation, and agriculture, with increasing presence in the evolution of the

fourth industrial revolution [1]. So, it is necessary to establish an initial basis for visual servoing using

an UAV and infer if there are reasons for further investigation into moving target tracking.

1.1 BACKGROUND

A multirotor is generally regarded as an unmanned rotorcraft or rotary-wing aircraft which generates

thrust and motion using two or more fixed-pitch rotors as actuators and allows for simpler rotor mech-

anics required for flight control using sensors, as compared to other types of aircraft [2]. A quadrotor

is a multirotor with four rotors and propellers, where the size may typically vary with propeller dia-

meters from 45mm for small aircraft to 480mm for large aircraft and the cost may relatively vary from

economical for hobbies to extravagant for specialised activities [2]. A variety of multirotor layouts,

including a quadrotor, are seen in Figure 1. (Occasionally, the terms “multicopter” and “quadcopter”

are used to refer to a multirotor or quadrotor respectively, but from linguistic perspectives and origins,

it is actually more accurate to use the terms “multirotor” and “quadrotor” respectively [3]).

Propellers

Stands

Front View

Frame

OctarotorHexarotorQuadrotorTrirotor

Figure 1: Examples of the common multirotor layouts for three (left), four (left-middle), six (middle),

and eight (right-middle) rotors with a general layout of a front view (right).

With regards to a quadrotor, visual servoing for moving target tracking is essentially the technique in

which the motion of the quadrotor is controlled by commands generated based on a passive vision-

based sensor. This visual servoing may be in the form of end-point closed-loop or eye-in-hand control

with a camera mounted on-board the quadrotor to observe the relative position and motion of a tar-

get. An alternative method of visual servoing is end-point open-loop or eye-to-hand control, where

multiple external cameras are fixed in the surroundings and form a motion capture system observing

the absolute position and motion of a target. These methods are demonstrated in Figure 2.

To distinguish within visual servoing, target detection is concerned with using a captured image to

identify a designated target, while target tracking is concerned with recognising the movements of the

1



End-Point Closed-Loop Control End-Point Open-Loop Control

Quadrotor

Target Camera
Views

Camera

Quadrotor

Target Camera
View

Camera

Figure 2: Examples of end-point closed-loop control (left) and end-point open-loop control (right).

designated target. Particularly, the target is identified through image processing with computer vision

techniques based on distinct features such as colours, areas, edges, corners, and centroids. However,

this becomes more difficult with a moving target where variable factors become apparent, which can

possibly include changes in the target movement, colour pattern, and structure or geometry, with

concurrent changes in the background environment and camera tilting orientations.

1.2 MOTIVATION

Due to their growing importance and utility, quadrotors are an important part of the robotics and en-

gineering fields of research with the incorporation of knowledge from mechanics, aviation, electron-

ics, and computer science [4]. Additionally, the incorporation of visual servoing with quadrotors has

become highlighted when signals from global positioning systems (GPS) are unreliable or unavail-

able in indoor environments [5, 6]. The various methods of implementing visual servoing through

computer vision have been extensively developed and show promising results with regards to target

detection - this is especially evident in systems with end-point closed-loop control, as successfully

demonstrated by Rabah et al. [1], Dunkley [2], Karlsson [6], and Kendall et al. [7] for examples.

However, there are still challenges with regards to implementing visual servoing through end-point

open-loop control with only a single camera, such that a quadrotor is able to achieve optimal moving

target tracking in three-dimensions while maintaining fully autonomous flight without manual inputs

from a user. This is a difficult challenge as it requires the extraction of three-dimensional informa-

tion from a two-dimensional vantage point. Moreover, a significant focus of published research into

computer vision is only involved with isolating or segmenting targets for detection, while the more

specific research into end-point open-loop control has been to integrate flight control and indirect

computer vision techniques using motion capture systems with multiple cameras triangulating posi-

tion, which can be expensive and difficult to access, and utilises systems with excess computational

effort for image processing without taking into account the possibility of substantial limits on the

available computational effort [1, 8, 9]. This is discussed by Mahony et al. [3] using a Vicon motion

capture system requiring considerable resources for state estimation of an Ascending Technologies
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quadrotor; and Dunkley [2] and Mack et al. [10] utilised a Microsoft Kinect as an economic altern-

ative to detect and control a Bitcraze Crazyflie quadrotor, but this features two cameras and a depth

sensor while still accessing excess computational effort on their ground control laptops - unlike most

of the end-point closed-loop control studies, these studies do not consider tracking moving targets.

Furthermore, a critical disadvantage of end-point open-loop control is the requirement for the external

cameras to already be set up, where this would present an obstacle if operating in an unfamiliar

environment since the setting up of multiple cameras may be tedious or inapplicable, but the use of

a single camera would be much more efficient. Thus, there is a need to investigate the detection and

tracking of a moving target using end-point open-loop control with only a single camera, which will

reinforce the success of published research with fundamental similarities as a consequence.

1.3 PROBLEM STATEMENT

It is necessary to develop and assess the effectiveness of a control system using end-point open-loop

visual servoing with a single camera to autonomously perform real-time moving target tracking. The

camera is to be fixed in the surroundings and the tests should be initially performed in a controlled

indoor environment. The detection of the target will be carried out using computer vision through

various techniques, but this needs to be processed using hardware with limited or marginal computa-

tional effort which will likely require a self-derived algorithm utilising lightweight image processing.

The tracking of the target will be performed such that a quadrotor effectively follows or mirrors the

movement of the target in a manner where the position of the target can be seen to be mapped directly

by the position of the quadrotor. This tracking should focus on the three degrees of translational free-

dom, but it may be possible to also track the orientation of the target with regards to yaw or rotation in

the horizontal plane, depending on the arrangement. The relative distance error between the position

of the target and position of the quadrotor should be minimised within an acceptable range for suc-

cessful implementation. The effectiveness can then be measured based on the lag time, robustness,

relative distance fluctuations, and ability to track the target at varying speeds. For supplement, this

should be achieved using mostly inexpensive and open-source hardware and software.

Thus, a research question is proposed: is it possible to implement end-point open-loop visual servoing

in a three-dimensional space using a fixed single camera for moving target tracking with limited

computational effort for image processing and a quadrotor following the movements of the target?

2 LITERATURE REVIEW

To establish a basis from which to progress, existing research and resources for quadrotors and com-

puter vision with regards to visual servoing for target tracking needs to be reviewed and documented.

It is also essential to understand certain theory and ideas behind the apparatus and methodology which

will be used, such that these concepts can be identified if they do arise even though they are not ex-

pected to be direct factors during the tests and in the results. Although many of the concepts discussed
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are generally applicable to visual servoing through other means as well, it should be noted that the

information will be presented primarily in relation to quadrotors and target tracking.

2.1 VISUAL SERVOING

Due to the aim of the research, there will be a focus on visual servoing through end-point open-loop

control, rather than end-point closed-loop control. This may employ position-based visual servoing

or image-based visual servoing. For position-based visual servoing, information is extracted from an

image based on features in the image and used to reconstruct the current three-dimensional position of

the target, where this can then be combined with the knowledge about the three-dimensional position

of the quadrotor to generate control and actuation corrections such that the quadrotor moves to the

desired position to follow the target [5]. For image-based visual servoing, an error signal is computed

directly from the features in an image, without performing a three-dimensional reconstruction, where

this error signal is then used to generate control and actuation corrections to match the current image

features with a desired arrangement [5]. It is also possible to use a mixed scheme with a combination

of aspects from both position-based visual servoing and image-based visual servoing [5].

Considering position-based visual servoing, the primary advantage is the convenience of generating

a setpoint as an absolute coordinate in three-dimensional space, but the primary disadvantage is the

uncertainty in the results of the three-dimensional reconstruction since there is a dependence on the

optical parameters, calibration of the vision system, and requisite knowledge about the dimensions of

the target prior to implementation. Considering image-based visual servoing, the primary advantage

is the insensitivity of the results to camera calibration, but the primary disadvantage is the necessity to

relate the features in the image to actions through non-linear or empirical relationships. The methods

of position-based visual servoing and image-based visual servoing are illustrated in Figure 3 for an

image, where these processes can then be repeated for each frame in a sequence.

TrackMotion
Controller

Image / Video
Processing

Error

Current Image

Detect

Desired Image

Compare

Setpoint

TrackMotion
Controller

3D Position
Reconstruction

Extract Compare
Current Image

Error

Desired 3D
Position SetpointPo

si
tio

n-
B

as
ed

V
is

ua
l S

er
vi

on
g

Im
ag

e-
B

as
ed

V
is

ua
l S

er
vi

on
g

Figure 3: Comparison between the basic methods of position-based visual servoing (top) and image-

based visual servoing for an image - this process is then repeated for each frame in a sequence.
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2.2 QUADROTOR DYNAMICS

As briefly mentioned, a quadrotor is a rotorcraft with four rotors which have fixed pitches and are

used to create motion by varying the thrust generated at each rotor [2]. The rotors usually consist of

propellers or blades in the form of aerofoils which are mounted on high-speed direct current (DC) mo-

tors, while the other parts of a typical quadrotor include a battery as the power source, various sensors

to estimate real-time position or velocity, cross frame holding the parts, and flight controller for stabil-

isation [2]. The very basic sensors include an inertial measurement unit, where a gyroscope stabilises

rotational motion and an accelerometer detects the current orientation - although these sensors alone

may lead to cumulative errors over time which will result in drifting with an ever-increasing differ-

ence between the estimated state and actual state [2]. More advanced and accurate sensors include

on-board ultrasonic or laser range finders to measure distances, GPS for precise location, barometers

to measure air pressure changes with altitude, magnetometers to determine which direction is north,

and monocular or stereo camera for measurements relative to the environment being observed [2].

With these parts, a quadrotor is able to vertically take-off and land with exceptional abilities to hover

at a fixed position and simultaneously manoeuvre vertically, latitudinally, and longitudinally.

With regards to the motion of the quadrotor, there are three degrees of freedom for translational dis-

placement, which include forward or backward, left or right, and up or down; and three degrees of

freedom for rotational displacement, which include roll, pitch, and yaw. These motions can be il-

lustrated on a conventional coordinate system relative to the quadrotor, as shown in Figure 4, where

translation along the x-axis, y-axis, and z-axis correspond to the translation displacements respectively

and rotation about the x-axis, y-axis, and z-axis correspond to the rotational displacements respect-

ively. Thus, there is a total of six degrees of freedom for the quadrotor.

Yaw Rotation

Up / Down

Roll Rotation

Forward /
Backward

Pitch Rotation

Left / Right
x

z

y

Yaw Rotation

Up / Down

Roll Rotation

Forward /
Backward

Pitch Rotation

Left / Right
x

z

y

M1 M2

M3M4

M1

M2

M3

M4

Figure 4: Coordinate system relative to the quadrotor showing the three translational and three rota-

tional displacements. The quadrotor may operate in a plus-mode (+) (left) or cross-mode (×) (right).
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The quadrotor is then able to generate these degrees of freedom by varying the thrust generated by

each of the four rotors, as seen in Figure 5 and Figure 6, such that a simple mechanical design can be

used with a complex controller design. With regards to forces, each rotor produces an upwards thrust,

torque about the centre of rotation, and drag opposite to the motion of the quadrotor. To move up or

down along the z-axis, the thrust simply needs to be increased or decreased respectively. To move

forward or backward along the x-axis, the thrust needs to be maintained while pitching clockwise

or counter-clockwise about the y-axis respectively. To move left or right along the y-axis, the thrust

needs to be maintained while rolling counter-clockwise or clockwise about the x-axis respectively.

The roll and pitch control will depend on whether the quadrotor is using a plus-mode (+) or cross-

mode (×), but the manner of operation is identical where a resultant torque is produced to induce

rolling or pitching. Considering a plus-mode, the roll with rotation about the x-axis is controlled by

the left and right rotors, where the left rotor thrust needs to be greater than the right rotor thrust to

roll clockwise and the right rotor thrust needs to be greater than the left rotor thrust to roll counter-

clockwise; and the pitch with rotation about the y-axis is controlled by the front and rear rotors, where

the rear rotor thrust needs to be greater than the front rotor thrust to pitch clockwise and the front rotor

thrust needs to be greater than the rear rotor thrust to pitch counter-clockwise (clockwise and counter-

clockwise directions are taken relative to the perspective of the quadrotor along the x-axis for rolling

and y-axis for pitching). For the cross-mode, the side selection of rotors for rolling and pitching is

identical, but the rotors will be used in pairs without intermediate rotors.

Finally, yawing with rotation about the z-axis is created using the resulting torque produced from the

rotors spinning against the air, where the direction of this torque is in the opposite direction to the

direction of the combined angular velocity from the rotors - for flight without yawing, this effect is
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Figure 5: Plus-mode (+) rotor arrangement to enable the translational and rotational displacements.
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cancelled by letting the two diagonally-opposite rotors spin clockwise while the other two diagonally-

opposite rotors spin counter-clockwise [2, 8]. So, when yawing is desired in a certain direction, the

angular velocities of the two rotors spinning in the opposite direction are decreased and the angular

velocities of the two rotors spinning in the same direction are increased, which will create rotation

about the z-axis such that the total thrust remains constant without rolling or pitching [2, 8].
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Figure 6: Cross-mode (×) rotor arrangement to enable the translational and rotational displacements.

For further understanding, a simplified analytical model of a quadrotor is given by Equation 1, which

describes the resultant thrust acting on the quadrotor from the thrust of each rotor, and Equation 2 to

Equation 4 for plus-mode or Equation 5 to Equation 7 for cross-mode, which respectively describe the

resultant torque acting on the quadrotor while rolling, pitching, and yawing. These relationships are

fairly basic and present an ideal model, which can be implemented using the inherent relationships

between thrust, torque, and supplied voltage for each rotor determined experimentally [11].

F = FM1 + FM2 + FM3 + FM4 −→ F − mg = mz̈ (1)

Tφ,+ = d+(FM4 − FM2) = Ixφ̈ (2)

Tθ,+ = d+(FM3 − FM1) = Iyθ̈ (3)

Tψ,+ = TM1 + TM3 − TM2 − TM4 = Izψ̈ (4)

Tφ,× = d×((FM3 + FM4) − (FM1 + FM2)) = Ixφ̈ (5)

Tθ,× = d×((FM2 + FM3) − (FM1 + FM4)) = Iyθ̈ (6)

Tψ,× = TM1 + TM3 − TM2 − TM4 = Izψ̈ (7)

Where F, resultant thrust, N; FM1, motor one thrust, N; FM2, motor two thrust, N; FM3, motor

three thrust, N; FM4, motor four thrust, N; m, mass, kg; g, gravitational acceleration, 9.807m/s2; z̈,

acceleration along z-axis, m/s2; Tφ,+, plus-mode roll torque, N.m; d+, plus-mode moment arm, m;

Ix, mass moment of inertia about x-axis, kg.m2; φ̈, roll angular acceleration, rad/s2; Tθ,+, plus-mode

pitch torque, N.m; Iy, mass moment of inertia about y-axis, kg.m2; θ̈, pitch angular acceleration,
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rad/s2; Tψ,+, plus-mode yaw torque, N.m; TM1, motor one torque, N.m; TM2, motor two torque, N.m;

TM3, motor three torque, N.m; TM4, motor four torque, N.m; Iz, mass moment of inertia about z-

axis, kg.m2; ψ̈, yaw angular acceleration, rad/s2; Tφ,×, cross-mode roll torque, N.m; d×, cross-mode

moment arm, m; Tθ,×, cross-mode pitch torque, N.m; and Tψ,×, cross-mode yaw torque, N.m.

When considering the representation of a quadrotor or another body with six degrees of freedom in

three-dimensional space, it is possible to use a reference frame with a coordinate system either fixed

to an observer or fixed to the quadrotor [2, 6, 11]. For an observer-fixed reference frame, it is assumed

that the observer as the origin is arbitrarily on the surface of the Earth, which is seen to be flat and

stationary. For a body-fixed reference frame, the centre of gravity of the quadrotor is conditioned as

the origin, which is convenient when accounting for inertial properties. Followingly, the conversion

between the observer-fixed and quadrotor-fixed reference frame can be seen as a relative transforma-

tion which is divided into the difference in distance along each axis and then the change in rotational

angles described by Figure 7 to produce a rotation matrix in Equation 8 [2, 6, 11].

D =


cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(φ) sin(θ) cos(ψ) − cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) sin(φ) cos(θ)

cos(φ) sin(θ) cos(φ) + sin(φ) sin(ψ) cos(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ) cos(φ) cos(θ)

 (8)

Where θ, pitch rotation, rad or o; ψ, yaw rotation, rad or o; and φ, roll rotation, rad or o.
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Figure 7: Demonstration of the conversion between two reference frames with translation (left) and

rotation (right). (In this context, the rotational angles can also be referred to as Euler angles).

2.3 RASTER IMAGES

A raster image or bitmap is composed of multiple pixels with the amount of pixels in the horizontal

and vertical direction forming a rectangular grid and resolution. The process of rasterisation involves

representing a real object or vector image in the form of a raster image, where the continuous data

describing the real object or vector image is converted into discrete data for representation through
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the raster image. However, there will always be information lost during rasterisation due to the

discretization error arising from a limit in the ability to completely render the continuous data. The

degree to which information is lost is dependent on the construction and resolution of the raster

image, which is a principal concern for lower resolutions when features reduce in quality and cannot

be resolved. The process of rasterisation and rendering a raster image is demonstrated in Figure 8.

Real Object
(Vector Image)

High Resolution
Rasterisation

Low Resolution
Rasterisation

Figure 8: Demonstration of the rasterisation of a real object with high and low resolutions. (Although

the original image of the real object is actually a raster image, its resolution is sufficiently large to

avoid raster artefacts and it serves as a view from an observer for this demonstration).

2.4 PINHOLE CAMERA MODEL

In fundamental terms, digital cameras capture raster images by measuring the amount and wavelength

or colour of light projected onto an imaging sensor with pixels (analogue cameras will not be con-

sidered) [2]. This imaging sensor is usually a charge-coupled device (CCD) or a complementary

metal-oxide semiconductor (CMOS) array [2, 6, 12]. As abridged in Figure 9, there will be rays of

light emitted from each point on the target. This light will spread and be incident on the lens of the

camera which will then focus the light to the corresponding points on the imaging sensor. So, it is

essential for the lens to be located at the exact focal length to ensure the light is focussed to a singular

point, rather than distorted or blurred discs which create an unclear image [2].
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Figure 9: Simplification of a model for a pinhole camera with a lens and imaging sensor.

For simplification while maintaining reasonable accuracy, a pinhole model can be considered for the

camera, where it is assumed that the rays of light only pass through the optical centre of the lens or, in
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other words, the rays of light not passing through the optical centre of the lens are neglected - this is

equivalent to an infinitesimal point as the aperture [2]. With this model, each ray of light can be seen

to travel in a straight line from the target to the imaging sensor and, for final simplification, the virtual

image plane can be considered with the uninverted projection [2]. Thus, these assumption allow for

the image to be regarded as a graphically equivalent description of the observed environment without

distortions or blurring, which is fairly valid as long as the lens is accurately located at the focal length.

Using the pinhole model and considering the virtual image plane, the associated relationship between

distances in the image can be related to actual distances in three-dimensional space. This is essentially

based on geometrically similar triangles formed by the rays of light between the actual point, projec-

tion on the virtual image plane, and optical centre of the lens, as explained in Figure 10 to produce

Equation 9 [2, 6]. As a result, Equation 10 describes the latitude relationships and Equation 11 de-

scribes the longitude relationship, where the focal length is a parameter of the camera and the virtual

image coordinates can be found from the image. Thus, the pinhole model can be seen as a first-order

approximation for the mapping of the observed environment. (If the real image plane is considered,

it is either necessary to redefine the directions or use a negative sign with the relationships).

f
z

=
u
x

=
v
y

(9)

(u, v)

(x, y)

u

v

y

x

Principal
Point

z

Lens With
Infinitesimal
Point Apeture

Optical
Centre

Virtual
Image
Plane

Target
Point
Plane

f = Focal Length

z = Altitude

Figure 10: Geometric relationships resulting from the pinhole camera model.
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u = f
x
z

(10)

v = f
y
z

(11)

Where f , focal length, px; z, altitude, m; u, virtual image latitude coordinate, px; x, actual latitude

coordinate, m; v, virtual image longitude coordinate, px; and y, actual longitude coordinate, m.

If the pinhole model is valid, straight lines in reality are projected as straight lines on the imaging

sensor - rectilinearity is preserved [2]. If the pinhole model is not valid due to excessive distortions,

these distortions will create radial and tangential inaccuracies in the image. The radial inaccuracies

result in straight lines appearing curved, while the tangential inaccuracies occur because the lens is

not aligned perfectly parallel to the imaging plane so some areas in the image appear nearer than

expected. It is most common for fish-eye distortion with large radial exaggerations towards the edges

of the field of view, as described by Figure 11, where this distortion is usually more pronounced on

wide angle lenses with large fields of view which capture a greater portion of the environment [2].

The distortion present in the actual images will need to be tested with the camera and deemed to be

insignificant without the need for compensation or significant with the need for compensation.

ra = Realistic Radial Distance From Principal Point
rd = Distorted Radial Distance From Principal Point

Significant Fish-Eye Distortion

Focal
Length

Projection
Sphere

Light Ray

z

Light Rays

Optical Centre

rd

ra

x or y

Principal Point

Image
Plane

Figure 11: Fish-eye distortion model representing projections of rays of light in a wide field of view

(left). Example of an image from a camera with very significant fish-eye distortion (right) [2].

Similarly, for the common type of camera, a rolling shutter mechanism is used and the image is not

actually captured at a single instant, but rather the imaging sensor sequentially scans through the

field of view either horizontally or vertically over a very short time period [2, 12]. As a result, there

is an opportunity for distortions to arise due to a target moving during the scanning process, which

would result in an inaccurate representation of the target in the captured image through shearing,

smearing, or deforming - although it should be emphasised that the speed of the target needs to be

exceptionally high for a significant effect [2, 12]. These effects are avoided with a global shutter

mechanism which captures the entire field of view in a single instant, but this is usually only available

on high-performance cameras. There are in-depth methods to compensate for rolling shutter, but for
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the operating speeds in this research, it can confidently be assumed that there will be no distortions

from rolling shutter and the camera essentially performs as though it has a global shutter.

2.5 COMPUTER VISION

Computer vision focusses on gaining high-level understanding from images and basically uses a se-

quence of consecutive images, where each frame is processed and relevant information is extracted.

The camera used for target detection and tracking may be monocular with a single lens for mono-

scopic vision or binocular with two lenses for stereoscopic vision. The advantage of a binocular

camera is that three-dimensional information can be extracted more accurately since the environment

can be compared from two vantage points, but this comes at a much higher cost. However, only a

monocular camera is available and, so, only monoscopic vision from a single vantage point will be

considered. Notably, other sensors could actually be used to achieve a similar overall result of target

detection and tracking, with methods based on sound, lasers, optics, or tactile interaction [2].

The image from the camera will require processing in order to detect the target in the image, with

examples of this processing seen in Figure 12. A colour image is described by an array of red,

green, and blue (RGB) 8-bit integers for each pixel between 0 for each minimum and 255 for each

maximum (alternative colour modes are available which offer advantages in different situations, such

as hue, value, and saturation (HVS)). The image can be converted to grayscale where each pixel is

described by a single scalar as an 8-bit integer for each pixel between 0 for black and 255 for white,

which is usually performed to reduce the required computational effort when processing an image

[13]. Blurring can also be performed through convolving the image with a low-pass filter, which is

usually employed to aid in noise reduction [13]. Thresholding aims to provide a simple method of

segmenting a grayscale image, where a binary image is created using only 0 as black, which is applied

when the value of a pixel is below a threshold value, and 1 as white, which is applied when the value

of a pixel is above a threshold value [13]. After applying a threshold, a morphology transformation

can be performed to further noise reduction - this uses an erosion transformation to remove noise of

white value or dilation transformation to connect regions of white value [13].

To develop basic target detection and shape analysis, there are existing algorithms for detecting edges

using high-pass or gradient filters, such as the Canny edge detection which is a multi-stage algorithm

with noise reduction, gradient intensity finding, non-maximum suppression, and hysteresis threshold-

ing [13]. Alternatively, it is possible to implement contour finding to locate curves joining the con-

tinuous points which have the same colour or intensity along a boundary - these curves can then be

used to analyse the centroid, area, orientation, and other characteristics of the target [13]. The level

of image processing can vary depending on the situation, where minimal processing will reduce the

delay before the response commands can be executed, but excessive processing will be more reliable

with more computational effort and heavier algorithms for more accurate results [14].
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Figure 12: Example of an image from a camera in original colour and with processing through gray-

scaling, blurring, thresholding, morphology transforming, edge detecting, and contour finding.

For more specific target detection, target recognition is considered to be concerned with recog-

nising the designated target based on learnt features. There are common algorithms which include

colour-based matching, template matching, meanshift, camshift (continuously adaptive meanshift),

and corner detection. The overall techniques and methods of these algorithms are briefly explored:

• The colour-based matching algorithm simply compares the colour in patches of an image against

a specific colour range for the target in an attempt to find a match within the range [13, 14]. This

algorithm usually requires for the target to be a single colour and may produce false-positives

when there are other objects of similar colours within the image [13, 14].

• The template matching algorithm compares patches of an image against a specific template for

the target in an attempt to find a match based on a flexible threshold for success [13, 14]. For

improved performance, multiple scaled and rotated templates of the target may be considered

[13, 14]. However, this is likely to be ineffective when the orientation and size of the target

constantly changes since many templates and increased computational effort will be required.

• The meanshift and camshift algorithms use an initial region of interest of the target separated

from the background in colour mode and then this region is shifted in subsequent frames based on

a local maximum of a probability distribution for the changes in the target location, orientation,

and size [13, 14]. The camshift algorithm essentially builds on the meanshift algorithm with the

use of an adaptive probability distribution to better account for changes in the orientation and

size of the target (the meanshift algorithm uses a static probability distribution) [13, 14].

13



• A corner detection algorithm basically considers the change in gradient intensity where corner

or blob points can be uniquely identified [2, 13]. There are various flavours of corner detection

algorithms, such as the Harris, Shi-Tomasi, scale-invariant feature transform (SIFT), speeded-up

robust features (SURF), or feature from accelerated segment test (FAST) [2, 13].

However, besides the colour-based matching algorithm, these algorithms generally require a large

amount of computational effort and iterations with multiple frames for success and it is usually not

possible to perform this processing on low-end hardware while achieving real-time performance [14].

Regardless of the detection or recognition algorithm, it is essential for the detection algorithm to

have repeatability, where the same features of the target should be consistently detected in consec-

utive frames; distinctiveness, where the features of the target can easily be distinguished using their

appearance; robustness, where detection is still possible in the presence of distortion or noise; low

computational effort, where the processing must be as fast as possible for real-time operation; scale

invariance, where the size of the target does not affect detection (with regards to a reasonable limit);

illumination invariance, where the lighting or photometry from the environment does not affect de-

tection; and orientation invariance, where the rotation of the target does not affect detection [2].

An additional computer vision technique which should be acknowledged is the use of optical flow.

Instead of directly detecting a specific target, optical flow is concerned with motion detection and

the changes in the patterns of features in the environment due to apparent motion caused by relative

motion between the camera and environment [13]. Although it may not be useful in target detection,

an optical flow sensor can be utilised to stabilise a quadrotor by discerning necessary adjustments.

2.6 LOCATION ESTIMATION

The attitude of the quadrotor refers to the angular orientation in three-dimensions and, along with

the location in three-dimensions, the state of the quadrotor can then be described by the vertical

altitude, position in the horizontal plane, and angular arrangement for movement. With regards to

target tracking, the primary concerns are the three translational degrees of freedom, such that the

desired altitude and position of the quadrotor relative to the altitude and position of the target can be

determined through position-based visual servoing by processing the captured frame.

So, the captured and subsequent frames can be processed to detect the target and find the approximate

area and centroid of the target as measured in terms of pixels in the frames. Thus, through a pinhole

camera model, a reconstruction of the three-dimensional locations can be applied as a method to

estimate the desired altitude for the quadrotor and current position of the target in terms of distances.

This can be pursued with an arrangement similar to that displayed in Figure 13 - although the method

of estimating the altitude is uncommon and does not directly appear in literature.

As mentioned, a complete motion capture system could be used to estimate the absolute position of

the target and quadrotor, where multiple external cameras detect reflective infra-red markers attached
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Figure 13: Arrangement for end-point open-loop control through detection and tracking of a target.

to the target and quadrotor, and use triangulation to estimate the position of each marker in three-

dimensions. To capture three translational degrees of freedom, it is only necessary for at least one

marker to be used on a rigid body, but to capture three translational degrees of freedom and three

rotational degrees of freedom, it is necessary for three or more markers to be used on a rigid body,

preferably in a non-ambiguous asymmetric arrangement [2]. However, since the aim of the research is

focussed on using a single inexpensive camera with a lightweight algorithm, a motion capture system

will not be considered for target detection or tracking purposes - although a motion capture system is

available and may be used to quantify and validate the effectiveness of the developed system.

2.7 CONTROL PRINCIPLES

The general goal in control theory is to generate a desired setpoint or reference state to achieve a

matching output. The control may operate through an open-loop or closed-loop. For open-loop

control, a desired setpoint is input to a controller as a reference state which generates a corresponding

signal for actuators to manipulate the system appropriately, where it is then assumed that the desired

setpoint is satisfied in the final output state - in other words, there is no sensor to decide whether the

desired setpoint has actually been satisfied [15]. This process is seen in Figure 14. To attain successful

open-loop control, the actuation must be repeatable and reliable with the ability to mitigate effects

from disturbances and noise, such that these effects are predictable or become negligible [15]. If the

open-loop control is not successful, the error will accumulate over time and rapidly diverge. It is also

necessary to discuss closed-loop control for understanding of the flight controller on a quadrotor.

For closed-loop control, the current state of the system is accurately estimated through measurements

from the sensors and this state is compared against the desired setpoint to find an error which needs

to be reduced. The controller then uses this error as an input and outputs the necessary commands

to correct the state of the system and bring it closer to the reference state. The error should be

minimised to converge to zero as quickly as possible while the system remains stable, preferably
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Figure 14: General schematic of an open-loop control system without feedback.

without oscillations - although it is unlikely for the error to be completely eliminated due to unknown

external disturbances. This continuous closed-loop is represented in the control system shown in

Figure 15, where a signal opposite to the forward direction is referred to as feedback.
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Figure 15: General schematic of a closed-loop control system with feedback.

For a quadrotor, the controller will output a velocity command to the rotors in an attempt to correct

the state of the system. To obtain satisfactory results, the controller will usually operate based on

a proportional-integral-derivative (PID) control method. The proportional (P) component reacts dir-

ectly to the magnitude of the current error, where an increased gain will allow for faster response but

may exhibit unwanted oscillations [2, 6, 15]. The integral (I) component reacts relative to the accu-

mulation of past errors over time, where there is an increasing effect over time to reach a steady-state

[2, 6, 15]. The derivative (D) component reacts relative to the rate of change of the error signal with

time for a prediction of future errors, where there is a reduction of oscillations by regulating the speed

of the response and increasing stability [6, 15]. These components utilise Equation 12 for the error

between the setpoint and actual signals with the implementation of PID control in the analytical form
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of Equation 13 or numerical form of Equation 14, where constant parameters or gains are used to

distribute the effects of the respective components. There are alternate methods of control, such as

non-linear sliding mode control or adaptive backstepping control, but PID control has been proven to

be robust and reliable when knowledge of the underlying processes are not known [1, 2, 5]. (It should

be noted that, in other situations, it may only be necessary for a subset of the control components,

such as only P, PD, or PI controllers - for 90% of these cases, a PI controller will be sufficient [15]).

e(t) = r(t) − b(t) (12)

f (t) = KPe(t) + KI

∫ t

0
e(t) dt + KD

de(t)
dt

(13)

f (t) ≈ KPe(t) + KI

t∑
τ=0

e(τ) + KD
e(t) − e(t − ∆t)

∆t
(14)

Where e(t), error signal; r(t), reference signal; b(t), feedback signal; f (t), control signal; t, time, s;

KP, proportional gain; KI , integral gain; KD, derivative gain; and τ, incremental time placeholder, s.

A quadrotor is a multiple-input multiple-output (MIMO) non-linear system with a high degree of

coupling between the input and output variables, multiple aerodynamic effects which are difficult to

measure or model precisely, and a time-varying nature as the battery is discharged and the voltage

decreases [11]. Also, from the perspective of control systems, quadrotors are relatively complex to

stabilise due to noise in sensors, model uncertainty, and other external disturbances [11]. Thus, it is a

challenge to design a flight controller for a quadrotor and it is usually required for cascading or nested

loops of multiple PID controllers directly monitoring and calculating the roll, pitch, yaw, and thrust

with required operation at frequencies above 100Hz as a minimum criteria.

Without external sensors, it has also been shown that it is practically impossible to obtain stable

control of a quadrotor, outside of simulations [11]. For unreliable control, the very basic sensors

through an inertial measurement unit, including a gyroscope and accelerometer, are sufficient but

the measurements from these sensors are usually noisy and inaccurate with large fluctuations and

uncertainties. As a result, these basic sensors will not be able to completely compensate for drift

from factors interfering with stability like wind and unbalanced weight distribution [2, 11]. For

reliable control, it is required for a more advanced sensor which will be able to provide more accurate

measurements of the state of the quadrotor, such as the mentioned sensors in the form of an external

motion capture system, optical flow sensor, ultrasonic or laser range finder, GPS, or on-board camera.

3 OBJECTIVES

The primary objectives are defined as follows, with relation to the available apparatus in Section 4:

• Validate the accuracy of the pinhole camera model, with compensation for major distortions if

required by the camera. (This will be done with a Raspberry Pi Camera Module 2.1).
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• Compare target detection through grayscale and colour processing on low-end hardware with

marginal computational effort. (A Raspberry Pi Zero W 1.1 will be used as a prime example).

• Develop and implement target detection and tracking through end-point open-loop visual ser-

voing using the pinhole camera model and computer vision techniques for image processing on

low-end hardware with marginal computational effort, where a quadrotor must remotely track

the position of the target in a mirroring fashion while varying its altitude to match the camera.

The tracking will be performed for three degrees of translational freedom and one degree of ro-

tational freedom as yaw orientation. (The Raspberry Pi Camera Module 2.1 and Raspberry Pi

Zero W 1.1 will be used along with OpenCV and a Bitcraze Crazyflie 2.1 quadrotor).

• Test the effectiveness of the target detection and tracking using an external motion capture system

with multiple cameras, where the relative deviation between the desired position from the target

and actual position of the quadrotor is measured throughout the experimentation. (The motion

capture system will comprise of four Qualisys Miqus M1 cameras).

4 APPARATUS

The available apparatus consists of various parts for different systems, as broadly outlined in Fig-

ure 16. In these interactions, the quadrotor receives control setpoints from the central processing

based on the visual servoing from the camera, while the motion of the target and quadrotor are tracked

by the motion capture system (to be used only as validation for the effectiveness of the actual target

tracking of the target by the quadrotor) and information about the current state is reported to a ground

control laptop for monitoring. Moreover, the basic details of the utilised software need to be briefly

explained, because it will form an intrinsic part in implementing the methodology presented in Sec-

tion 5. Further resources from the manufacturers of the parts are included in Appendix A.

QuadrotorProcessingCamera

Ground Laptop

Moving Target

Motion Capture

PythonArduino

Direct Connection
Indirect Dependence

Figure 16: Outline and interactions of the apparatus from a broad overview.

4.1 QUADROTOR PARTS

For the quadrotor, the open-source Bitcraze Crazyflie 2.1 (subsequently referred to as Crazyflie) will

be used. This quadrotor consists of a central control board with various on-board sensors (also acting

as a lightweight frame), four rotor motors, four propellers, four stands, and battery - these components

are seen in Figure 17 showing the complete assembly. Additionally, expansion decks can be connected
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to the control board for further on-board functionality and sensing, and a 3D printed propeller guard

may be mounted with three 12mm motion capture markers - this leads to an additional payload of 7g

which is below the supported additional payload of 14g. (Unfortunately, the motion capture markers

could not be placed asymmetrically elsewhere as instability arose with unpredictable drift, but the

chosen placement is acceptable since the yaw measurements will be accurate and are more important

than the roll and pitch measurements which may be adversely affected).
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Figure 17: Photographs showing various isometric views of the assembled Bitcraze Crazyflie 2.1

quadrotor, including the Bitcraze Flow V2 expansion deck mounted at the bottom viewing the ground.

The control board, seen in Figure 18 with the basic schematics and photographs, executes the con-

trol setpoints for the motion of the quadrotor with the flashable firmware and on-board sensors. The

firmware for the real-time operating system is based on the FreeRTOS kernel, which handles the

scheduling of processes and calculations for the flight control - FreeRTOS is also open-source [4, 16].

This board has diagonals of 80mm and a mass of approximately 7g using a symmetric form factor

and is equipped with a STM32F405 microcontroller as the main processor (Cortex-M4, 168MHz,

192kB SRAM, and 1MB flash), nRF51822 microcontroller for radio interfacing and power manage-

ment (Cortex-M0, 32Mhz, 16kB SRAM, and 128kB flash), 2.4GHz ISM band radio with 20dBm

or 100mW low-noise amplifier, 8kB EEPROM, Bluetooth low energy (BLE) module for interfacing

through a smartphone application client, micro-USB Type-B for charging or interfacing over a wired

connection, BMP388 pressure barometer, BMI088 inertial measurement unit containing a three-axis

gyroscope and three-axis accelerometer, and JST-DS connector for connection to the battery [4, 6,

16, 17]. The processor and radio chips exchange data over an internal link protocol using UART as

a physical interface, while the processor and sensors exchange data over I2C, PWM, and SPI - these

interactions are illustrated in Figure 19 [4, 6, 16]. There is also an integrated attitude and heading

reference system with an extended Kalman filter to provide a fairly reliable estimation of the current

state of the quadrotor with regards to position, velocity, angular arrangement, and stability [4, 16].
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Figure 18: Schematics (top) and photographs (bottom) showing the top and bottom views of the

Bitcraze Crazyflie 2.1 control board with the arrangement of the various sensors [18].

The Crazyflie is capable of a maximum speed up to 1.41m/s, although oscillations may be introduced

if the Crazyflie needs to stop suddenly at a specific location. To achieve steady flight control and

maintain its orientation, the control board implements internal cascading PID controllers for attitude

control of position and velocity. In the cascade, there is an inner loop operating at 500Hz to control

the thrust and angular velocity of roll, pitch, and yaw, and there is an outer loop operating at 250Hz

to control the roll, pitch, and yaw angles for altitude and position control with stabilisation [2, 6, 16].

These controllers are conventionally described by Equation 13 and Equation 14, and have been tuned

with default values based on the common construction of the Crazyflie for stable and agile flight.

The on-board sensors are sufficient to stabilise the orientation of the Crazyflie, but there will be a

large uncertainty in position - in other words, it is possible for the on-board gyroscope and acceler-

ometer to maintain the orientation and the on-board barometer could be used to estimate the altitude

relative to sea level with Equation 15 based on pressure and temperature measurements, but this is

extremely noisy and will be inaccurate [2, 11]. To accurately stabilise the position of the Crazyflie, it

is required for additional sensors to perform measurements relative to the external environment [16].
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Figure 19: Interactions of the on-board microcontrollers and sensors of the Bitcraze Crazyflie 2.1.

So, the Bitcraze Flow V2 expansion deck (subsequently referred to as Flow deck) in Figure 20 will

be mounted at the bottom on the control board to provide steady flight by detecting motion in any

direction, which can then compensate for unwanted motion or measure desired motion [19]. The

Flow deck uses a VL53L1x ToF sensor for laser-ranging and measuring the altitude to the ground up

to 4m with a field of view of 25o and an accuracy on the order of millimetres, and a PMW3901 sensor

to employ optical flow and measure movements of the ground with a field of view of 42o [19].

zsea =

(
T
τ0

)(
1 −
(

p
p0

)−Rτ0/(µg)
)

=

(
T

0.0065K/m

)(
1 −
( p

101325Pa

)0.19026
)

(15)

Where zsea, altitude relative to sea level, m; T , temperature, K (if this cannot be measured, T0 as the

temperature at the lower troposphere limit may be used, 288.15K); τ0, temperature gradient within

the lower troposphere, 0.0065K/m; p, pressure, Pa; p0, pressure at the lower troposphere limit,
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Figure 20: Photographs showing the top and bottom views of the Bitcraze Flow V2 expansion deck.
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101350Pa; R, universal gas constant, 8.315kg.m2/(s2.mol.K); µ, air molar mass, 0.02896kg/mol; and

g, gravitational acceleration, 9.807m/s2. This is an approximation of the hypsometric formula [2].

The rotor motors, propellers, and battery are briefly mentioned, although there is only minimal in-

formation available. The rotor motors are generic brushed DC motors, which are coreless and provide

fast accelerations and angular velocities up to approximately 21000rev/min [4, 16]. The propellers

have a length of 45mm and are made from plastic to mitigate the possibility of damages occurring

during a collision or crash. The battery is lithium-polymer (LiPo), supplies 3.7V, and has a capacity of

250mA.hr with a discharge rate of approximately 15C for a continuous flight time of approximately

7min, depending on the manoeuvres performed - there is also an internal protection circuit module to

preserve the cycle life and prevent over-charging, under-charging, and shorting [4, 16, 17].

4.2 VISUAL SERVOING PARTS

To perform visual servoing and image processing, the mentioned Raspberry Pi Zero W 1.1 (sub-

sequently referred to as Raspberry Pi) and Raspberry Pi Camera Module 2.1 (subsequently referred

to as Pi Camera) will be used. The Raspberry Pi is a single-board computer with a mass of 8g, wire-

less LAN 802.11n, and Bluetooth 4.1, and features a 1.0GHz BCM2835 single-core CPU, 512MB of

RAM, 40-pin GPIO header, micro-SD card slot for flash memory (a SanDisk 16GB micro-SD card

will be used), mini-HDMI port for display, micro-USB port for power at 0.140A and 5.1V (with the

Pi Camera, the required current may increase so a supply capable of 2.1A will be used), micro-USB

port for peripherals, and CSI camera connector for communication with the Pi Camera [20].

The Pi Camera is designed to detect frequencies of light over the visible light range and has a mass

of 3g, focal length of 3.04mm, focal ratio of 2.0, latitudinal field of view of 62.2o, and longitudinal

field of view of 48.8o [21]. For the imaging sensor, the Pi Camera uses an 8Mpx Sony IMX219 with

square pixels of 1.12µm and support for photograph resolutions up to 3280px by 2464px and video

resolutions up to 1920px by 1080px with 30fr/s, 1280px by 720px at 60fr/s, or 640px by 480px at

90fr/s (or a lower resolution can be chosen, but the maximum frames rate is 90fr/s) [21]. The basic

schematics and photographs of the Raspberry Pi and Pi Camera are seen in Figure 21.

Fortunately, the Pi Camera aims to have little to no noticeable fish-eye distortion. However, the Pi

Camera does use a rolling shutter where frames are rapidly scanned vertically and, as a result, the

frames may be somewhat susceptible to various distortion effects, which are especially pronounced

when the relative speed of the target is very high and related to the magnitude of the seconds per frame

captured by the camera. As mentioned, there are methods to model and compensate for distortions

from rolling shutter, but these are expected to be unnecessary since it is not crucial for exceptional

detail and the discrepancies are expected to be very minimal at the operating speeds.

The communication between the Raspberry Pi and Crazyflie will be facilitated by a Bitcraze Crazyra-

dio PA (subsequently referred to as Crazyradio), which is a USB Type-A radio dongle, has a mass

22



Bottom View

23.9mm65mm

30
m

m
25m

m

Raspberry Pi Camera Module 2.1

T
op

 V
ie

w
B

ot
to

m
 V

ie
w

Standard Connection

Lens, Image Sensor

The 150mm camera 
cable converts the 

standard connection at 
the Pi Camera to the 

mini-connection at the 
Raspberry Pi Zero.

Raspberry Pi Zero W 1.1

Micro-USB Power

Micro-USB Input

Mini-HDMI Output

Micro-SD Card Slot

Cam. Mini-Connect

Single-Core CPU

40 GPIO Header

T
op

 V
ie

w

150mm

30
m

m
25m

m
Top View

Figure 21: Schematics (bottom) and photographs (top) showing the top and bottom views of the

Raspberry Pi Zero W 1.1 (left) and Raspberry Pi Camera Module 2.1 (right) [22, 23].

of 6g, and features a nRF24LU1+ radio microcontroller (16MHz, 2kB SRAM, and 32kB flash) with

a 20dBm or 100mW low-noise amplifier for communication through the 2.4GHz ISM band radio at

frequencies from 2.400GHz to 2.525GHz for 125 channels [16, 24]. The communication data rates

can be set at 250kB/s, 1MB/s, or 2MB/s and the data sizes can be up to packets of 32B for low latency,

while the ideal range can exceed 1km under normal conditions with a direct line-of-sight and without

interference or obstacles [16, 24]. The minimum latency to send a packet is estimated to be about

2ms with 1ms for the USB serial communication and 1ms measured latency for the radio at 2MB/s

without any retries [25]. Photographs of the Crazyradio are seen in Figure 22.

By default, the Crazyradio operates in primary transmitter mode (PTX), while the Crazyflie operates

in primary receiver mode (PRX), where the Crazyradio sends data over the communication signal to

the Crazyflie and the Crazyflie returns an acknowledgement packet which may also contain additional

data for logging and monitoring [16]. So, for the control and communication, the high-level control

setpoints will be generated on the Raspberry Pi and then wirelessly transmitted to the Crazyflie using

the Crazyradio, where the firmware on the Crazyflie will interpret these setpoints and implement the

corresponding low-level commands to control the rotors and overall flight.
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Figure 22: Photographs showing the top and bottom views of the Bitcraze Crazyradio PA.

4.3 MOVING TARGET PARTS

The moving target will be a simple two-wheeled design with a Dagu S4E EDU Controller (sub-

sequently referred to as the Dagu Controller) as the motor driver and microcontroller which is com-

patible with the Arduino integrated development environment (IDE) with an Arduino Pro Mini 328

5V 16MHz bootloader [26]. This controller has an ATmega328P processor at 16MHz with 2kB of

SRAM, 32kB of flash, 1kB of EEPROM, and will receive power from a battery pack with five Dura-

cell 1.5V AA batteries with a maximum distribution of 2.5A to each motor pin [26].
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Figure 23: Photographs showing the Dagu S4A EDU Controller (top-left), Dagu DG02S 48:1 Geared

DC Motor (top-right), and various isometric views of the target assembly (bottom).
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Connecting to the two driven wheels of 65mm in diameter, there are two Dagu DO02S 48:1 Geared

DC Motors (subsequently referred to as the Dagu Motors) requiring an input voltage between 3V and

6V with a no load current of 200mA, stall current of 1.5A at 3V or 3A at 6V, and maximum allowable

torque of approximately 0.078N.m [27]. The built-in gearbox reduces the motor speed based on a

ratio of 48:1, where the output angular speed can vary from 65rev/min at 3V unloaded to 190rev/min

at 6V unloaded [27]. A generic omni-wheel will also be positioned centrally for stability.

For target detection with grayscale processing, a white disk of 93mm in diameter will be used as the

marker, since it contrasts with the colour of the target and background for reliable detection and will

not change shape as the orientation of the target changes. For target detection with colour processing,

a red rectangle of 95mm by 74mm will be used as the marker, since it is unique in the environment.

The Dagu Controller and Dagu Motors are shown in Figure 23 with the complete assembly, which is

able to accomplish a suitable range of translational motion. The mass and quantity of each component

are summarised in Table 1 for a total mass of approximately 528g.

Table 1: Quantity and mass of the components used to assemble the moving target.

Quantity [unit] Unit Mass [g]

Dagu S4A EDU Controller 1 14

Dagu DG02S 48:1 Geared DC Motor 2 32

Dagu 65mm Wheels With Rubber Tyres 2 40

Generic Metal Omni-Wheel 1 36

Dagu DG0-12 Metal Chassis 1 218

Duracell 1.5V AA Battery 5 25

Other Parts (Cables, Nuts, Bolts, Target, etc) - 39

Total Assembly - 576

To separately evaluate the yaw orientation tracking, a SG90 Micro Servo Motor will be used to set the

desired orientation with a white rectangle of 140mm by 95mm as the marker, as seen in Figure 24.

This servo motor can rotate between 0o and 180o with a torque up to 0.245N.m and mass of 14.7g,

where control is issued through a PWM signal and a voltage between 4.8V and 6V is supplied.
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Figure 24: Photographs showing the SG90 Micro Servo motor and yawing target assembly.
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4.4 MOTION CAPTURE FACILITIES

The motion capture system utilises four Qualisys Miqus M1 cameras. These cameras feature a 1Mpx

image sensor with a resolution of 1216px by 800px, high-speed frame rate up to 250fr/s, latitudinal

field of view of 58o, longitudinal field of view of 40o, maximum range of 10m using 16mm markers,

and low latency for real-time applications with a camera latency of 2.9ms and system latency of 5ms

(there is also an alternate mode for a latitudinal field of view of 41o and longitudinal field of view

of 27o) [28]. The body of the camera has dimensions of 140mm by 84mm by 84mm with 102 NIR

LEDs and infra-red strobe at 850nm [28]. Overall, the system allows for an accuracy anticipated to

be on the order of millimetres. The setup in the motion capture facilities is shown in Figure 25, where

the operating area for the quadrotor to use is approximately 2420mm by 2420mm with a height up to

about 1500mm and black mats have been placed on the floor to cover this area.
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Figure 25: Photographs showing a Qualisys Miqus M1 (top-left), basic layout of the motion capture

facilities (top-middle), carbon fibre calibration kit for the initial calibration of the motion capture

volume (top-right), and arrangement of the apparatus within the motion capture facilities (bottom).
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4.5 GROUND CONTROL LAPTOP

A laptop will be used to act as a ground control station for remotely accessing the Raspberry Pi, mon-

itoring the target detection and tracking, and running the Qualisys Track Manager (QTM) software

for the motion capture system. To facilitate connection to the Raspbian operating system on the Rasp-

berry Pi, a local wireless LAN network will be created by the ground control laptop. In this case, an

HP Notebook 14-an013nr will be used with an AMD E3-7110 processor incorporating four threads

and four cores running at 1.8GHz, but any modern laptop would likely be a sufficient substitute.

4.6 SOFTWARE

The software to be used for visual servoing, controlling the quadrotor, and controlling the target is

open-source with free availability and primarily includes Python, OpenCV, Raspbian, and Arduino.

The logos associated with these software packages are illustrated in Figure 26 for visual distinction.

Figure 26: Open-source software used for visual servoing, quadrotor control, and target control.

4.6.1 CRAZYFLIE

The low-level firmware of the Crazyflie is written in C and C++, but there is a Crazyflie Python applic-

ation programming interface (API) library cflib with high-level bindings which can send setpoints.

With access through Python 3.7.3, the following classes and functions will be used:

• Crazyflie: Contains the intrinsic commands and callbacks used by the higher-level functions

in other classes, where the same design as in the firmware is used for a one-to-one mapping.

• SyncCrazyflie: Wrapper around the Crazyflie class to handle its asynchronous nature and

convert it for use as blocking functions in scripts performing tasks as sequences of events.

• SyncLogger: Provide synchronous access to log current variables. The variables which can be

logged include estimated position, velocity, acceleration, angular orientation, and other inform-

ation associated with the current state of the quadrotor as measured from the on-board sensors.

• LogConfig: Create a configuration in which to log variables.

– add_variable: Add a variable to be logged with its group and name.

– start: Begin the logging of the added variables.

– stop: End the logging of the added variables.
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• Commander: Send control setpoints to the Crazyflie. The setpoints need to be sent as often as

possible, where the Crazyflie has a continuous backend or watchdog timer which will reset the

roll and pitch after 0.5s and stop the motors after 1s if no setpoint is received. A minimum limit

at which setpoints can be generated and sent is recommended at 10Hz.

– send_setpoint: Send a setpoint in terms of roll, pitch, and yaw angles and thrust.

– send_velocity_world_setpoint: Send a setpoint in terms of the desired absolute velo-

cities in the x, y, and z directions with a specific yaw rate.

– send_hover_setpoint: Send a setpoint in terms of desired absolute velocities in the x

and y directions with a specific yaw rate, while a constant altitude is maintained.

– send_position_setpoint: Send a setpoint in terms of the desired absolute position with

x, y, and z coordinates and a specific yaw angle. This actually uses a velocity setpoint over

a time period since there is no direct sense of absolute position, so the error in the estimated

position may accumulate over time. The Crazyflie attempts to execute this as fast as possible

with a maximum velocity up to 1m/s as limited by default - this can easily be changed by

setting the posCtlPid.xyVelMax and posCtlPid.zVelMax parameters.

• Extpos: Send the current position of the Crazyflie measured using external sensors, which will

be directly forwarded to the position estimator of the Crazyflie.

– send_extpos: Send the current position of the Crazyflie in terms of x, y, and z coordinates.

• MotionCommander: Send control setpoints to the Crazyflie. This class is more orientated to-

wards blocking functions, where a command is executed and the script waits until the motion is

complete before continuing, rather than just sending a setpoint and continuing immediately. So,

it is not an applicable option for real-time operations requiring variable adjustments.

If desired, further information can be found from the Bitcraze GitHub repository: https://github.

com/bitcraze/crazyflie-lib-python. A graphical client is also available which allows for

flashing firmware and interfacing with the Crazyflie using a remote controller for manual control.

4.6.2 OPENCV

OpenCV is a library of programming functions aimed at real-time computer vision. The Python im-

plementation of OpenCV will be used through the OpenCV Python 3.2 library, which is an API with

bindings for interfacing with the actual functions written in C++ (the complete version of OpenCV is

actually written in C++, but this will be difficult to integrate with the Crazyflie Python API library and

the extra functions are not really required for appropriate target detection and tracking). The library

includes various functions for image processing as basically summarised:

• line, rectangle, circle, polylines, and putText: Draw shapes or text on the image.

• cvtColor: Convert between two colour modes. This will typically be used to convert from the

default blue, green, and red (BGR) mode to grayscale with the argument COLOR_BGR2GRAY or to
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a hue, lightness, and saturation (HLS) mode with the argument COLOR_BGR2HLS. (It should be

emphasised that BGR is the default colour mode - not the common RGB mode).

• blur, GaussianBlur, medianBlur, or bilatitudinalFilter: Apply a blur distortion to the

image. This will typically be used to provide smoothing and remove noise.

• threshold: Apply a threshold or mask to the image. This is typically used to generate a binary

image using the argument THRESHOLD_BINARY or THRESHOLD_BINARY_INV.

• adaptiveThreshold: Apply an adaptive threshold or mask. This is typically used to consider

illumination factors from the local neighbourhood of a pixel before applying the threshold.

• inRange: Apply a threshold or mask to the image based on the colours within minimum and

maximum bounds (usually with HLS or HVS). This is typically used to generate a binary image.

• erode, dilation, or morphologyEx: Apply a morphology transformation. This is typically

used to further reduce noise, where the latter will either apply an erosion transformation (remove

white noise) followed by a dilation transformation (restore the original areas without noise) with

MORPH_OPEN or apply a dilation transformation (connect white regions) followed by an erosion

transformation (restore the original areas without disconnections) with MORPH_CLOSE.

• Laplacian, Sobel, or Scharr: Find the gradient or derivative intensities in a direction. This is

typically used to highlight edges using a high-pass filter based on feature changes.

• Canny: Perform edge detection. This is an existing algorithm with multiple stages including

noise reduction with a Gaussian filter, gradient intensity finding with the Sobel method in both

latitudinal and longitudinal directions, non-maximum suppression with the removal of pixels

which are not of the maximum value in the local neighbourhood in the gradient directions, and

hysteresis thresholding to classify pixels as edges to be kept or non-edges to be discarded. Since

a self-derived algorithm is required, this function will not be used, but it provides an initial guide.

• findContours: Find the contours (as mentioned, a contour is a continuous curve joining the

points which have the same colour or intensity along a boundary). This is typically used for basic

shape analysis and target detection with RETR_TREE to retrieve all contours and reconstruct a full

hierarchy of nested contours and CHAIN_APROX_SIMPLE to only store the end points of straight

lines for decreased processing. (The contours can be drawn with findContours).

• boundingRect: Find the top-left coordinate for a bounding rectangle and the width and height

of this bounding rectangle applied to a contour. This is typically used for monitoring by drawing

the found bounding rectangle around a contour. (There is no consideration for rotation).

• minAreaRect: Find the centroid, dimensions (height and width), and orientation between 900

and 0o for a contour. This is typically used when the orientation of a contour is needed.

• matchTemplate: Search for and find the location of a provided template image in a larger

image. This is typically used when an almost identical match is possible, where there is no

scaling, colour, or distortion changes of the template image within the larger image.
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By default, OpenCV uses the connected camera to capture an image at a resolution of 640px by

480px, but this can be changed along with other default parameters using set, such as the frame rate,

codec, file format, brightness, contrast, saturation, hue, gain, exposure, and white balance - it should

be noted that the camera must inherently support changing these parameters. There are also more

advanced functions available which allow for camera calibration, optical flow, augmented reality,

epipolar geometry, and various machine learning techniques, but these are mostly only applicable for

specialised applications where greater computational effort is available [13].

(It should be noted that the OpenCV Python API library requires Numpy for backend processing,

which is an open-source Python library for performing advanced calculations and matrix operations).

4.6.3 RASPBIAN

Raspbian Buster July 2019 is an operating system based on Debian 10 with the Linux Kernel 4.19.

The operating system has been optimised for best performance on the Raspberry Pi and will be used

to run the control script for visual servoing while issuing setpoints to control the Crazyflie through the

installation of Python 3.7.3 and the required libraries. It also allows for interfacing with the ground

control laptop using the wireless LAN 802.11n of the Raspberry Pi and local network created by the

ground control laptop, where a remote desktop protocol (RDP) or secure shell (SSH) session is used

for remote login through a graphical user interface (GUI) or the command line respectively.

4.6.4 ARDUINO

The Arduino IDE offers a means to program the target using C++ with special rules of code struc-

turing, and it compiles the script when uploading to the controller (any programming language with

a compiler to produce binary machine code could actually be used, but it will be most convenient to

use the Arduino IDE). Since the Dagu Controller is compatible with the Arduino IDE, the motors

can then be controlled using PWM signals to produce voltages between 0V and 5V corresponding to

duty cycles linearly represented by values between 0 (0%) and 255 (100%). The following Arduino

commands will primarily be used to control the motors and corresponding motion of the target:

• pinMode: Configure a pin to behave as either an INPUT (high-impedance state) or OUTPUT (low-

impedance state). This is used to initially set the direction pin of each motor as an output.

• digitalWrite: Write a HIGH (5V) or LOW (0V) value to a digital pin. This is applied on the

direction pin for the respective motor and used to set the direction in which the motor must turn.

• analogWrite: Write an analog value to a pin for a duty cycle represented between 0 (0%) and

255 (100%). This is applied to the signal pin for the respective motor and used to set the speed

in terms of a PWM value at which the motor must turn based on a voltage between 0V and 5V.

• servo.write: Instruct the servo motor to rotate to the passed angle between 0o and 180o (servo

is the name assigned to the pin on which the servo motor is attached).
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5 METHODOLOGY

After preparatory development with the apparatus to gain an improved understanding, the proposed

methodology can be divided into parts including camera compensation and calibration; initial Crazy-

flie considerations; target detection through processing the images from the camera; target tracking

through issuing command setpoints to autonomously move the Crazyflie based on the location of the

target; overall communication between the Raspberry Pi, Crazyflie, ground control laptop, and mo-

tion capture system; and motions of the target with different paths. Importantly, it is also required to

monitor and store the position of the target and Crazyflie in real-time during execution using the mo-

tion capture system which will be examined to validate success or failure. A complete risk assessment

for the operators, supervisors, and nearby bystanders has also been included in Appendix D.

5.1 INITIAL CAMERA CONSIDERATIONS

Firstly, it is necessary to confirm there is no significant fish-eye distortion, blurring, or effects from

rolling shutter. This will be done by taking a series of sample images of a chessboard template and

measuring whether the straight lines in the template appear straight in the images, where the meas-

urement will be conducted by digitally overlaying straight lines over the captured image to observe

any deviations. This also serves as a means to ensure the camera is not faulty.

Before the Raspberry Pi and Pi Camera can be used for target detection and tracking, it is necessary

to evaluate the real-time performance for the image processing. This will be assessed by recording

a short clip of approximately 15s to 30s with resolutions of 160px by 120px, 320px by 240px, and

640px by 480px to determine which resolutions provide a sufficiently high frames rate with less

than 100ms between frames, so at least 10 setpoints can be generated per second. For a realistic

result, practical cases will be considered to represent realistic use where there is no image processing,

a minimal amount of image processing with only primary information for basic monitoring, and a

high level of image processing with the additional extraction of secondary information for complete

monitoring. Both grayscale and colour processing will be compared to evaluate the most effective and

efficient method. For an accurate result, the average of three tests for each case with each resolution

will be compared. The developed control script is available in Appendix B, where only OpenCV was

employed which is valid since the tests are being compared directly against each other.

Warranting a lack of distortion and successful real-time performance, the pinhole camera model needs

to be validated for the purpose of determining the desired position for the Crazyflie. So, the camera

needs to be calibrated which will be based on a relationship for the current altitude in terms of the

focal length of the camera, actual target area, and virtual target area, as found through manipulating

the pinhole camera model relationships in Equation 16 for the disk target. Because the focal length of

the camera and actual target area will be constant, this reveals an experimental correlation coefficient

unique to the camera which can then be used in calculations with only the virtual target area.
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Thus, a calibration will be performed where the camera is moved between an altitude of approxim-

ately 300mm to 800mm in increments of 20mm while the virtual target area is detected and recorded,

as demonstrated in Figure 27. At each altitude increment, the target will be positioned in the field

of view at the centre, top-left, top-right, bottom-left, and bottom-right regions to obtain an average

value of the virtual target area and a gauge of the likely error and uncertainty in the measurements.

This allows for a trend to be extracted from the recorded data, which can also be used to estimate the

altitude of the camera. Considering the rectangle target, the same relationship can be derived from the

pinhole camera model, as demonstrated in Equation 17, which presents the option for confirmation

with reiteration of the calibration. The proportional relationships are also simplified in Equation 18.

z = f
x
u

= f
y
v
−→ z = f

√
πx2/4
πu2/4

= f

√
πy2/4
πv2/4

= f

√
Axy

Auv
≡ kA−0.5

uv where k = f
√

Axy (16)

z = f
x
u

= f
y
v
−→ z = f

√
xy
uv

= f

√
Axy

Auv
≡ kA−0.5

uv where k = f
√

Axy (17)

∴ z ∝
1
u

and z ∝
1
v

and z2 ∝
1

Auv
or z ∝

1
√

Auv
(18)

Where z, altitude, m; f , focal length, px; x, actual latitude distance, m; u, virtual image latitude

distance, px; y, actual longitude distance, m; v, virtual image longitude distance, px; Axy, actual area,

m2; Auv, virtual image area, px2; and k, camera correlation coefficient, m.px.

Camera Altitude

400mm800mm 780mm 420mm 0mm

Target

The apparent one-dimensional length/width of the target is 
expected to be inversely proportional to the altitude. Thus,
the apparent two-dimensional area of the target is expected 

to be inversely proportional to the square of the altitude. 

Apparent One-Dimensional Size Change

Target (Half)

Field Of View (Half)

Figure 27: Method of calibrating the camera and determining the focal length.

5.2 INITIAL QUADROTOR CONSIDERATIONS

By default, the Crazyflie is set to operate in cross-mode which is acceptable given that there are

no obvious reasons to change to plus-mode. To avoid effects from flying too near the ground, the

Crazyflie should maintain an altitude above 300mm while also remaining within the range of the

motion capture facilities. The natural behaviour of the Crazyflie while attempting to hover also needs
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to be analysed with observations into the drift experienced without any trimming being performed, so

this can then be corrected with appropriate trimming to establish balanced behaviour if necessary.

5.3 TARGET DETECTION

A direct form of position-based visual servoing will be used, where both the current altitude of the

camera and position of the target will be estimated through a reconstruction of the three-dimensional

locations. Unfortunately, this technique will slightly suffer from the camera calibration errors.

So, the necessary information for visual servoing through target detection and tracking can be found

from the Pi Camera viewing the target. The target detection can be performed through either grayscale

or colour processing, where various filters are applied to the captured image to isolate the target - as

mentioned, the most effective and efficient method will be initial evaluated and then used in the final

tests for the best real-time performance. After considering and testing with the available techniques in

OpenCV through trials, the following developed algorithm will be performed on each captured frame

with the aim of reliable target detection while maintaining minimal computational effort:

A. Fundamental concept for grayscale processing (either A or B is performed):

1. Once the BGR original colour image has been captured, it will be converted to a grayscale image

to reduce the values for each pixel and computational effort required during processing.

2. Using Equation 19, a binary threshold will be applied to the grayscale image with a threshold

value, where a pixel above this value will become white and a pixel below this value will become

black. The value will be tuned to remove the background while maintaining the target as white.

p (g) =

gnew if g > gthr

0 otherwise
(19)

Where p, pixel; g, grayscale value; gnew, new grayscale value, 255; gthr, grayscale threshold value.

B. Fundamental concept for colour processing (either A or B is performed):

1. Once the original BGR colour image has been captured, it will be converted to a HLS colour

image to provide easier isolation of the range for the distinct colour of the target.

2. Using Equation 20, a binary threshold will be applied to the HLS colour image with minimum

and maximum bounds of HLS values to create the isolation range, where a pixel within this

range will become white and a pixel outside of this range will become black. The bounds act as

a tolerance since there may be distortions in the captured colours due to environment lighting,

and the values will be tuned to remove the background while maintaining the target as white.

p (h, l, s) =

gnew if hmin < h < hmax, lmin < l < lmax, smin < s < smax

0 otherwise
(20)

Where p, pixel; h, hue value; l, lightness value; s, saturation value; gnew, new grayscale value, 255;
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hmin, minimum hue value; hmax, maximum hue value; lmin, minimum lightness value; lmax, maximum

lightness value; and smin, minimum saturation value; smax, maximum saturation value.

C. Common target detection strategy (performed after either A or B is completed):

3. The noise in the threshold image will be reduced to a satisfactory level using a morphology

transformation with a kernel size tuned for an open transformation with an erosion transforma-

tion followed by a dilation transformation. This will ensure the target is the largest white region

in the image (unless there is a remarkably rare exception, but this will be accounted for and

mitigated by checking whether the corresponding pixel area is within the expected range).

4. The largest contour in the image will then be found based on the maximum pixel area in terms of

pixels. Assuming this contour is the target as is practically assured, the location of the centroid

of the target can be found in terms of pixels to complete the target detection (a box can also be

drawn around the contour to identify the target for monitoring confirmation).

5. If yaw orientation tracking is also desired, the angle of the target relative to the forward direction

needs to be distinguished by fitting a rectangle with the minimum area in which the contour of

the target can be enclosed. The respective angle of this rectangle can then be found from the

corners of the rectangle, where this angle will provide the orientation of the target.

Implementing a blur before applying the threshold was initially considered, however preparatory

tests indicated that this was unnecessary as long as a morphology transformation was performed, as

is preferred for better noise reduction - in other words, a blur offered no perceivable advantages and

will only result in greater computational effort. It was also possible to apply an adaptive threshold,

but this is expected to be unnecessary given the stark contrast between the background and target.

5.4 TARGET TRACKING

Since the features of the white disk on the target will be constant for every orientation, the current

altitude of the camera can be estimated based on the area of the target in terms of pixels in the captured

frame, due to the target remaining at a constant altitude on the ground and relative altitude changes

coming from the altitude of the camera. Thus, once the area of the target is known from the target

detection, the desired altitude for the Crazyflie can be related with the found relationship from the

camera calibration in the form of Equation 16 (instead of being used for calibration with a known

altitude, the relationship will be known and the associated altitude will be calculated).

Using the pinhole camera model, the actual position of the target (which is the desired position of the

Crazyflie) can also be estimated based on the location of the centroid of the target in terms of pixels

relative to a chosen coordinate system within the captured frame. Thus, once the centroid of the target

is known from the target detection, the desired position of the Crazyflie can be estimated based on

Equation 21 for the latitude coordinate and Equation 22 for the longitude coordinate (the previously

found altitude and experimentally calibrated focal length will actually be used instead of the ratio of

the areas from the expanded theoretical model). These methods are illustrated in Figure 28.
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Where x, actual latitude coordinate, m; u, virtual image latitude coordinate, px; z, altitude, m; f , focal

length, px; y, actual longitude coordinate, m; and v, virtual image longitude coordinate, px.
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Figure 28: Tracking of the target with the corresponding movement of the Crazyflie, where the desired

altitude will also be varied by manually changing the relative altitude of the camera.

To achieve successful results, the Crazyflie needs to know its starting location. So, for a coordinate

system with the origin chosen to be at the centre of the image (coordinates of (u, v) = (0, 0) are

assigned to the centre pixel, which corresponds to position coordinates of (x, y) = (0, 0)), it will be

required a conversion of the initial coordinate system through manipulation with Equation 23 and

Equation 24, such that the coordinate system is moved and rotated from the default location in the

top-left corner. This coordinate system conversion is detailed in Figure 29.

u = −vi +
rW

2
(23)

v = −ui +
rH

2
(24)

Where u, new latitude coordinate, px; ui, initial latitude coordinate, px; rW , latitude resolution, px; v,

new longitude coordinate, px; vi, initial longitude coordinate, px; and rH , longitude resolution, px.
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Figure 29: Coordinate system transformation to convert the initial system into the desired system.

A coordinate system also needs to be established for the yaw orientation tracking. As seen in Fig-

ure 30, the direct output from OpenCV is uncertain and it is not possible to establish the orientation
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since the target could be aligned in either of the two forward quadrants. So, relative to the rectangle

target, it is devised that the returned output will be the angle measured between 0o and 90o from a

horizontal projected at the lowest corner to the first edge. The orientation relative to the two forward

quadrants can then be evaluated based on the labelling of the corners and which of the edges are

labelled as the width and height. Thus, the yaw orientation can be found between 90o and 90o using

the conditions of Equation 25 where the forward direction has a yaw orientation of 0o.

ψ =

−ψi if W < H

−ψi − 90o otherwise
(25)

Where ψ, yaw orientation, o; ψi, initial yaw orientation, o; W, width, px; and H, height, px.
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Figure 30: Explanation of the initial yaw orientation (left) and desired coordinate system (right). (It

should be emphasised that this is only the coordinate system for the Crazyflie, and the target will use

a conventional coordinate system between 0o and 180oas presented in Figure 32).

Subsequently, the sequence in which setpoints will be generated for target tracking is summarised:

1. Following the target detection, the found centroid of the target contour will be transformed into

the desired coordinate system with the centre of the camera view as the origin.

2. The pinhole camera model will be used to convert the found area and transformed centroid of

the target contour into position coordinates for the desired altitude and position of the Crazyflie.

3. The desired altitude and position of the Crazyflie will then be sent to the Crazyflie as a setpoint

for the Crazyflie to move to this location, relative to its initial location as the origin.

4. This process repeats with each frame captured by the camera for as long as the target is moving.

5.5 CONTROL AND COMMUNICATION

To clearly describe the overall processes of target tracking, the flow diagram in Figure 31 is developed.

In this diagram, the general idea for performing target tracking and open-loop control of the Crazyflie

is depicted which is fully implemented in the final control script presented in Appendix B.
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Figure 31: High-level flow diagram of the control flow for the moving target detection and tracking

with regards to three degrees of translational freedom and a degree of rotational freedom as yaw

orientation. (The suitable HLS colour bounds for the dark red are (150, 40, 40) and (210, 250, 250)).



For communication between the Crazyflie and Raspberry Pi with the Crazyradio, a radio frequency of

2.480GHz will be used with a data rate of 2MB/s and radio address of 0xE7E7E7E7E8 (change from

the default radio address of 0xE7E7E7E7E7 to avoid interference from other Crazyflies). Because the

control scripts will be running on the Raspberry Pi, a RDP is used to control the Raspberry Pi from

the ground control laptop, such that the control scripts can be executed and terminated when desired.

5.6 TARGET MOTION

Throughout the tracking, the target will remain on the ground and can move in any direction on this

plane at any moment. The target can also be seen to move from a starting point to reach a destination

point along a path which mimics movement according to independent intentions without influence

from the camera or Crazyflie - in other words, the target is unaware of the tracking and will not
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Figure 32: Paths on which the target will aim to move to test rectilinear (top), circular (middle),

combined (bottom-left), and yaw rotation (bottom-right) motions. (The actual movement may differ).
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intentionally try to assist or avoid the tracking. Furthermore, it is also assumed that the environment

is clear from static and dynamic obstacles for both the target and Crazyflie.

Initially, the strength of the PWM signals for each motor will be calibrated in preparatory develop-

ment. To evaluate different motion characteristics, three tests will be performed and aimed at val-

idating rectilinear motion with primary movements along latitudinal and longitudinal lines, circular

motion with primary movements across latitudinal and longitudinal lines, and a combination of rec-

tilinear and circular motions in a seemingly random manner. Throughout the motions, the target will

move at various speeds up to 0.20m/s as well as being stationary for sporadic periods of time, where

the Crazyflie will be required to hover at a fixed position above the target. Moreover, an additional

test will be performed for the yaw orientation, where the target is rotated both clockwise and counter-

clockwise between 90o and 90o at about 10o/s. The planned path for these tests are annotated in

Figure 32 - although the actual paths may slightly differ due to inconsistencies between the motors of

the target, which is not an issue as these paths are essentially arbitrary and the Crazyflie must track

the target regardless of the path. Each test will be performed two times to ensure repeatable results.

The altitude of the camera will also be altered for each of the tests and, for the rectilinear and cir-

cular motion tests, the target will actually stop at a midpoint and the altitude of the camera will be

increased or decreased manually with the tripod. Over all of the tests, the variety of altitudes to be

examined specifically include 380mm, 480mm, 580mm, and 780mm with the corresponding tests

related in Figure 32. The respective fields of view from the camera at each altitude are measured to be

approximately 520mm by 390mm, 660mm by 500mm, 800mm by 600mm, and 1050mm by 800mm.

5.7 DATA MONITORING

As mentioned in Figure 31, the current view from the camera will be displayed by the Raspberry Pi

which is then streamed to the ground control laptop for live monitoring during the tests. It is also

possible to immediately terminate the execution of the control script and land the Crazyflie, which is

included for safety so a test can be cancelled if unexpected or unsafe behaviour is observed.

To validate the tests as successes or failures, the motion capture system will store the position of the

target and Crazyflie in real-time at 100fr/s, such that any relative deviation between the current posi-

tion of the target (which is the desired position of the Crazyflie) and actual position of the Crazyflie

can be exactly quantified. Using the motion capture system is also more accurate than logging vari-

ables measured on-board the Crazyflie. The QTM will mostly handle running of the motion capture

system, apart from starting the capture and defining which markers form rigid bodies for the target

and Crazyflie, but it is necessary to initially calibrate the cameras with the following procedure:

1. Ensure there are no markers or reflective surfaces in view of the cameras. If there are reflective

surfaces outside of the operating area which cannot be moved or covered, apply an auto-mask to

digitally block these areas in the views of the camera.
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2. Position the calibration L-tool in the centre of the operating area, where the corner will define

the origin, the long axis will form the x-axis, and the short axis will form the y-axis.

3. Select the 300mm carbon fibre calibration kit under Project Options with a wand-tool length of

300.8mm and begin the calibration in QTM for a time of about 20s to 30s.

4. While the calibration is running, proceed to wave the wand-tool completely around the perimeter,

inside of the operating area, and through different orientations until the calibration is complete.

5. Ensure the results of the calibration are successful, the resulting residuals for each camera are

similar, and the standard deviation for the markers on the calibration tools is low.

6 DATA ANALYSIS AND RESULTS

By implementing the methodology, the appropriate data is to be obtained in a primitive form. This

data can then be processed with an analysis for meaningful results. Ultimately, this allows for the

experimental application to be judged against the objectives to form conclusions. There are also

minor justifications submitted for certain decisions, but these are further discussed in Section 7.

6.1 CAMERA OBSERVATIONS

Firstly, the fish-eye distortion is evaluated using the template similar to that on a chessboard. From

a photograph of this pattern shown in Figure 33, it is seen that the distortion present in the image

from the Pi Camera is inconsequential with insignificant distortion towards the edges. Thus, it can

be initially assumed that the pinhole camera model is valid, especially near the central region of the

image, and it is not necessary to implement compensation for distortion.

From Figure 33 and monitoring while the target was moving, it was evident that there was occasion-

ally slight blurring of the captured image with the Pi Camera being unable to auto-focus. However,

due to the methods for image processing, this is not concerning as the effects have no meaningful

impact on the target detection since adequate noise reduction is applied.
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Figure 33: Photograph and evaluation of the fish-eye distortion in the Pi Camera. (The image was

aligned with the pattern as best as manually possible but this may not be absolutely perfect).
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6.2 IMAGE PROCESSING

Using the Raspberry Pi and Pi Camera, the collected data from the preliminary image processing

to determine the most suitable resolution for acceptable real-time performance is shown in Table 2,

and example frames illustrating the available detail at each resolution with grayscale and colour pro-

cessing are seen in Figure 34. Based on the desired criteria, it is clear that a resolution of 160px

by 120px and grayscale processing attains the best performance with an average frame rate around

30.1fr/s and time of 33ms between frames, although colour processing would still be sufficient if

desired. The higher resolutions result in unacceptable frame rates and a noticeable lag was also

observed between the displayed frame and real-time arrangement. This enables setpoints to be gen-

erated at about 30.1Hz which should allow for smooth flight without instability - although this may

be slightly decreased due to the lightweight but noteworthy processing to control the Crazyflie.

Table 2: Evaluation of the most suitable resolution for acceptable real-time performance, comparing

various levels of no image processing, grayscale processing, and colour processing with resolutions

of 160px by 120px (left), 320px by 240px (middle), and 640px by 480px (right).
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18.9 588 31.1 0.032

22.9 707 30.9 0.032

24.7 772 31.2 0.032

B

27.3 823 30.1 0.033

25.0 753 30.1 0.033

25.5 766 30.0 0.033

C

22.3 280 12.6 0.080

17.5 217 12.4 0.081

28.1 355 12.6 0.079

D

21.6 542 25.1 0.040

22.6 561 24.8 0.040

23.8 585 24.6 0.041

E

22.0 249 11.3 0.088

23.5 267 11.4 0.088

24.7 275 11.1 0.090

2. 320px By 240px
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20.3 217 10.7 0.094

21.2 233 11.0 0.091

23.6 261 11.1 0.090

B

17.9 149 8.33 0.120

22.4 191 8.53 0.117

25.3 214 8.46 0.118

C

17.8 60 3.37 0.296

18.5 65 3.52 0.284

27.7 96 3.47 0.288

D

17.5 116 6.63 0.151

14.5 94 6.49 0.154

27.2 181 6.66 0.150

E

28.5 92 3.23 0.310

22.2 72 3.25 0.308

28.4 93 3.28 0.305

3. 640px By 480px
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A

18.7 72 3.85 0.260

19.3 73 3.78 0.264

15.5 59 3.81 0.263

B

27.6 107 3.88 0.258

21.8 81 3.72 0.269

24.3 93 3.83 0.261

C

38.3 41 1.07 0.934

34.9 39 1.12 0.894

30.1 33 1.10 0.912

D

26.8 81 3.02 0.331

35.4 105 2.97 0.337

23.2 67 2.89 0.346

E

14.2 14 0.99 1.013

29.4 28 0.95 1.049

22.7 21 0.93 1.080

A = None, B = Min. Gray Process, C = Max. Gray Process, D = Min. Colour Process, E = Max. Colour Process.
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Original With Overlay Grayscale Conversion

Morph. With ContourBinary Threshold

Original With Overlay Grayscale Conversion

Morph. With ContourBinary Threshold

Original With Overlay Grayscale Conversion

Morph. With ContourBinary Threshold

Original With Overlay Colour Mask

Morph. With ContourColour Threshold

Original With Overlay Colour Mask

Morph. With ContourColour Threshold

Original With Overlay Colour Mask

Morph. With ContourColour Threshold

Figure 34: Example frames and processing captured at 160px by 120px (top), 320px by 240px

(middle), and 640px by 480px (bottom), with an overlay of the target detection (as a graphical con-

venience for monitoring) found through grayscale processing (left) and colour processing (right).

While the camera calibration was being completed, the current area of the target in the captured frame

was printed to the shell. Unexpectedly, it was gathered from this that the execution drastically slowed

down with a sharply dropped frame rate and lag of approximately 2s to 3s between the displayed

frame and real-time arrangement, even though the resolution remained the same. By removing the
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commands to print to the shell for confirmation, it was concluded that printing to the shell indeed

caused these issues and is not a viable option for real-time monitoring of the camera view.

The rasterisation of the target was also considered for the disk and rectangle targets. The comparison

for a resolution of 160px by 120px is seen in Figure 35, where it was observed that the pixelated

appearance of the rectangle target was greatly altered depending upon the orientation, but there was

almost no change in the pixelated appearance of the disk target for any orientation.

Disk Target
Arbirary Orientation

Rectangle Target
Diagonal Edges

Rectangle Target
Straight Edges

Figure 35: Rasterisation at 160px by 120px for the disk (left) and rectangle (middle and right) targets.

(These images have been cropped from the appearance of the targets during the altitude calibration).

6.3 CAMERA CALIBRATION

For the camera calibration, the altitude of the camera was increased between 300mm and 780mm

corresponding to a decrease in the area of the target, with example frames captured during the process

shown in Figure 36. The recorded data is plotted in Figure 37 which allows for the trend relationship

to be evaluated and used for the Crazyflie to maintain an altitude. By manipulating Equation 16

to form Equation 26, the focal length in terms of pixels can be determined using the actual area of

7088.2mm2 for the disk target. To achieve confirmation, the rectangle target of 13300mm2 was also

used for the same calibration methodology with the recorded data plotted in Figure 38.

f =
k√
Axy

(26)

Where f , focal length, px; k, camera correlation coefficient, m.px; and Axy, actual area, m2.

From Equation 16 and Equation 17, it is evident that it is theoretically expected for a power relation-

ship with a correlation coefficient and exponent of 0.5. From the recorded data, the disk calibration

resulted in a trend relationship given by Equation 27 with an exponent of 0.484. and the rectangle

calibration resulted in a trend relationship given by Equation 28 with an exponent of 0.492. With the

correlation coefficient and Equation 26, the focal length in terms of pixels is then found to be 111px

for the disk calibration and 116px for the rectangle calibration, which is an actual percentage differ-

ence of 4.41% and magnitude percentage difference of 0.931% using Equation 29 and Equation 30.
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Altitude: 460mm
Area: 470px2

Altitude: 530mm
Area: 358px2

Altitude: 600mm
Area: 277px2

Altitude: 660mm
Area: 227px2

Altitude: 750mm
Area: 175px2

Figure 36: Example frames captured at 160px by 120px using grayscale processing at altitudes

between 460mm and 750mm for the camera calibration using a disk as the target with a radius of

95mm, with an overlay of the target detection (as a graphical convenience for monitoring).

z = 9.128A−0.484
uv (27)

z = 13.47A−0.492
uv (28)

%pa =

∣∣∣∣ a − b
(a + b)/2

∣∣∣∣ × 100% (29)

%pm =

∣∣∣∣ log(a) − log(b)
(log(a) + log(b))/2

∣∣∣∣ × 100% =

∣∣∣∣ log(a/b)
log(ab)/2

∣∣∣∣ × 100% (30)

Where z, altitude, m; Auv, virtual image area, px2; %pa, actual percentage difference; a, first arbitrary

variable; b, second arbitrary variable; and %pm, magnitude percentage difference.
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Figure 37: Altitude calibration using a disk as the target with a radius of 95mm. (The uncertainty in

each altitude measurement was about ±5mm which is not distinguishable on the plot).
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Figure 38: Altitude calibration using a rectangle as the target with edges of 140mm by 95mm. (The

uncertainty in each altitude measurement was about ±5mm which is not distinguishable on the plot).

6.4 QUADROTOR OBSERVATIONS

Considering ground effects as the increased lift and decreased drag experienced when flying close to

a fixed surface, there were no noticeable ground effects once the Crazyflie had taken off and reached

the desired altitudes above 300mm. For an aircraft not designed to normally operate with ground

effects, these ground effects can be identified by abnormal flight control when flying near the ground,

but this was not present in a perceivable form as the Crazyflie was tracking the target.

The Flow deck was able to successfully stabilise the Crazyflie and hover at a fixed position without the

need for roll or pitch trimming. However, during take off, there were instabilities where the behaviour

of the Crazyflie was partially uncontrolled and erratic, and this had to be corrected by accounting for

the slightly altered origin after take off. There were also indications of very slow and minor drift in

the yaw orientation over extended periods of time, but this was seen to be almost undetectable for

short flight times and did not affect the performance of the Crazyflie.

6.5 VISUAL SERVOING

While the tests were being performed, the primitive data was collected in the form of the three-

dimensional position and three-dimensional rotation of both the target and Crazyflie. To extract

meaning from these data, it is necessary to analyse it with regards to lag time in position, target

detection robustness, relative deviation fluctuations, and ability to track the target at varying speeds.
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6.5.1 PRIMITIVE DATA

From the motion capture system, the basic three-dimensional position of the target and Crazyflie was

recorded and is shown in Figure 39 to Figure 41 for each trial in each of the rectilinear, circular, and

combined tests respectively. The position of the target is directly presented relative to its starting

position, while the position of the Crazyflie is re-evaluated relative to its initial position after taking

off due to the mentioned irregularities. Unfortunately, there was a slight delay in the first trial of the

rectilinear test when manually raising the tripod which contributed to an extended total time, but there

was no meaningful impact on the results. (As mentioned, the exact uncertainty of the motion capture

is not precisely known but it is anticipated to be on the order of millimetres).

Figure 39: Position of the markers in the first (top) and second (bottom) trials of the rectilinear test.

The trials for the yaw orientation tests were also completed fairly successfully. The primary results

are given in Section 6.5.2 with the analysis, since the three-dimensional position of the target and

Crazyflie is mostly irrelevant when considering the yaw orientation, but it was observed that the

Crazyflie would slightly tremor with periods of minor instability as it tried to maintain a fixed position

while only yawing (as expected, the target simply rotated without translational motion).
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Figure 40: Position of the markers in the first (top) and second (bottom) trials of the circular test.

Figure 41: Position of the markers in the first (top) and second (bottom) trials of the combined test.



6.5.2 RESULTS ANALYSIS

For the translation tests, the relevant results for each trial are divided into the latitude and longitude

position of the target and Crazyflie, magnitude of the deviation between the relative position of the

target and Crazyflie as determined with Equation 31, and altitude of the Crazyflie. These factors are

plotted against time and analysed in Figure 42 to Figure 47 for each of the translation tests.

Dxy =

√
(xt − xq)2 + (yt − yq)2 (31)

Where Dxy, latitude and longitude position deviation, m; xt, target latitude position, m; xq, quadrotor

latitude position, m; yt, target longitude position, m; and yq, quadrotor longitude position, m.
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Figure 42: Relevant results against time throughout the first trial of the rectilinear motion test.

When the altitude was being changed in the rectilinear and circular motion tests, the Crazyflie jittered

irregularly in the latitude and longitude positions due to the manual adjustment of the camera, where

the camera could not be kept at a constant position during this adjustment. However, once the succeed-

ing altitude was reached, the Crazyflie was able to continue to operate without a distinct overshoot or

any perceivable repercussions. There was also a slight lag throughout the tests between the actions
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Figure 43: Relevant results against time throughout the second trial of the rectilinear motion test.

OvershootMax.

Min.

First
Average

Second
Average

Average

Altitude
Change

Jitter

Altitude
Change

Jitter

D
eviation

Figure 44: Relevant results against time throughout the first trial of the circular motion test.
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Figure 45: Relevant results against time throughout the second trial of the circular motion test.
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Figure 46: Relevant results against time throughout the first trial of the combined motion test.
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Figure 47: Relevant results against time throughout the second trial of the combined motion test.

of the target and response from the Crazyflie, especially when the target moved at higher speeds - the

speed of the target ranged from stationary up to approximately 0.215m/s, which can be represented in

terms of pixels using the pinhole camera model with Equation 32. This lag, along with the resulting

position deviation between the relative position of the target and Crazyflie, are outlined in Table 3

with a comparison of the position deviation if the average lag is compensated (for discussion, the

average values are more relevant since the magnitude of the deviation is being considered).

m = f
n
z
−→ ṁ = f

ṅ
z

(32)

Where m, arbitrary virtual image distance, px; f , focal length, px; n, arbitrary actual distance, m; z,

altitude, m; ṁ, arbitrary virtual image velocity, px/s; and ṅ, arbitrary, actual velocity, m/s.

For the yaw orientation test, the relevant results for each trial are divided into the angle of the yaw

orientation for the target and Crazyflie, deviation between the relative angle of the yaw orientation for

the target and Crazyflie as determined with Equation 33, and altitude of the Crazyflie. These factors

are plotted against time and analysed in Figure 48 and Figure 49. A lag between the Crazyflie and

target was still observed, although the average values were particularly less prominent. As outlined
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Table 3: Outline of the lag and position deviation of the Crazyflie in the x-y-plane for the translation

tests, with comparison for the deviation after adjustment accounting for the average lag.

Lag Time [s] Original Dxy [mm] Adjusted Dxy [mm]
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Rectilinear
Trial 1 116.1 0.18 0.96 1.60 3.82 81.2 194 9.50 58.9 132

Trial 2 80.60 0.46 1.02 1.79 2.24 95.9 269 2.94 56.0 136

Circular
Trial 1 95.15 0.39 0.78 1.23 2.06 94.6 194 8.77 67.2 138

Trial 2 91.88 0.22 0.86 1.80 0.659 80.2 241 0.482 63.8 135

Combined
Trial 1 64.65 0.19 0.74 2.18 8.02 73.3 133 1.15 39.0 129

Trial 2 62.29 0.31 0.67 2.61 10.2 75.1 145 2.14 39.3 117

Overall Averages - 0.292 0.838 1.87 4.50 83.4 196 4.16 54.0 131

in Table 4, this lag results in an angular deviation between the yaw orientation of the target and

Crazyflie (for discussion, the minimum and maximum values are more relevant since the direction

of the deviation is included). The position deviation in the translation tests and angular deviation in

these yaw orientation tests while compensating for the average lag are seen in Figure 50.

Dψ = ψt − ψq (33)

Where Dψ, yaw orientation deviation, o; ψt, target yaw angle, o; and ψq, quadrotor yaw angle, o.

Table 4: Outline of the lag and angular deviation of the Crazyflie for the yaw orientation in the rotation

tests, with comparison for the deviation after adjustment accounting for the average lag.

Lag Time [s] Original Dψ [o] Adjusted Dψ [o]
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Yaw
Trail 1 69.36 0.34 0.45 0.88 -9.54 0.185 9.87 -4.51 0.136 4.46

Trail 2 67.06 0.12 0.38 0.64 -8.32 -1.08 8.95 -4.76 -1.04 3.96

Overall Averages - 0.23 0.415 0.76 -8.94 -0.45 9.42 -4.64 -0.45 4.21

In each of the tests, there may be partial effects on the minimum and maximum values from the target

suddenly doubling-back which artificially fluctuates the lag and position deviation. This should be

minimal during the rotation tests due to the low average lag, but it may be noticeable on the translation

tests although the stationary periods before doubling-back should reduce these effect.
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Figure 48: Relevant results against time throughout the first trial of the yaw orientation test.
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Figure 49: Relevant results against time throughout the second trial of the yaw orientation test.
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Figure 50: Deviations with adjustments for average lag in the translation and rotation tests.



To isolate the altitude behaviour, the average altitude at each part of the flight was shown on the

altitude plots for each trial. As mentioned, the initial behaviour during take off is partially unstable

with repeated overshooting, where the actual and magnitude percentage differences in the overshoot

can be compared, with Equation 29 and Equation 30 respectively, using the average altitude over the

following part of the flight. The compiled altitude results are included in Table 5.

Table 5: Outline of the altitude of the Crazyflie for each of the translation and rotation tests.
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Rectilinear
Trial 1 574 477 495 551 772 799 824 14.7 2.38

Trial 2 583 473 490 511 767 793 820 17.2 2.79

Circular
Trial 1 947 778 794 814 470 484 497 17.6 2.64

Trial 2 833 780 793 808 471 510 539 4.98 0.75

Combined
Trial 1 663 552 576 593 - - - 14.1 2.22

Trial 2 664 564 574 596 - - - 14.5 2.29

Yaw
Trail 1 467 375 393 404 - - - 17.3 2.90

Trail 2 468 370 393 411 - - - 17.3 2.91

Overall Averages - - - - - - - 14.7 2.36

7 DISCUSSION

Using inexpensive and low-end hardware in the form of a Raspberry Pi and Pi Camera for target

detection with computer vision techniques in OpenCV, it was possible to implement position-based

visual servoing through end-point open-loop control, where a Crazyflie effectively tracked the relative

position of a target in a mirrored fashion. Specifically, as is required for the aim of the research,

the Raspberry Pi is definitely considered to have marginal computational effort capabilities, since

it only utilises a basic 1.0GHz single-core processor and 512MB of RAM, as compared to modern

hardware where common consumer devices have multiple threads and cores with processing speeds

over 1.8GHz and access to over 2GB of RAM - this is further highlighted by the cost of a Raspberry

Pi which is only around R200 [29]. The results are discussed for direct relation to the objectives.

7.1 CAMERA AND PROCESSING FACTORS

Examining the first significant finding in Table 2, the image processing tests at different resolutions are

clear and, in a sense, restrictive when considering the apparatus and computationally limited hardware
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in general. As a consequence, it would be absolutely infeasible to use computer vision techniques to

control the Crazyflie in real-time with the default resolution of 640px by 480px in OpenCV, since a

setpoint is only generated every 263ms (frequency of only 3.80Hz) on average with minimum gray-

scale processing; and, with a resolution of 320px by 240px, a setpoint can be generated every 118ms

(frequency of 8.47Hz) on average with minimum grayscale processing, but this may be impractical as

it is below the recommendation for setpoints to be generated at 10Hz as a minimum limit. By redu-

cing the resolution to 160px by 120px, it was possible to achieve a generation of setpoints every 33ms

(frequency of 30.1Hz) on average with minimum grayscale processing, while colour processing and

maximum processing were also satisfactory if desired. The relationship between the resolution and

time for each setpoint to be generated appears to be non-linear which is expected since the number

of pixels in the image is decreasing by a factor of four as the resolution is halved in each dimen-

sion, but additional in-between resolutions should be investigated to find a reliable relationship, if

this relationship is desired to be found (which was unnecessary for the aim of this research).

To compare the grayscale and colour processing, it is evident that the minimum grayscale processing

obtains a higher frame rate over the minimum colour processing with actual percentage differences

of 19.3%, 24.7%, and 25.6% (magnitude percentage differences of 2.93%, 6.17%, and 10.6%) for

resolutions of 160px by 120px, 320px by 240px, and 640px by 480px respectively. Similar results

are evident for the maximum processing with actual percentage differences of 10.1%, 6.55%, and

15.4% (magnitude percentage differences of 2.22%, 2.70%, and 5.26%) for resolutions of 160px by

120px, 320px by 240px, and 640px by 480px respectively. Furthermore, there was severely more

noise observed around the target in the frames captured with colour processing, which results in a

less accurate interpretation of the target in colour processing compared to grayscale processing.

The Pi Camera experienced no detrimental fish-eye distortion or effects from rolling shutter, and it

was calibrated to find the relationship between the virtual target area and current altitude of the camera

with the experimental trend relationships for the disk and rectangle targets expressed in Equation 27

and Equation 28 respectively. By averaging the 111px and 116px experimental focal lengths from the

disk and rectangle targets respectively, the focal length in terms of pixels is estimated to be 113.5px.

In addition, these remarkable correlations between the experimental trend relationships and with the

theoretical predictions further reinforce and validate the legitimacy of the pinhole camera model. (It

should be noted that this calibration is unique to the tested resolution of 160px by 120px, where

higher resolutions will have a greater virtual target area due to the increased number of pixels).

Unfortunately, the calibration for the rectangle target suffered greater uncertainty than the calibration

for the disk target, where the variation for the rectangle target increased from 16px to 58px for the

minimum bound and from 27px to 75px for the maximum bound, and the variation for the disk target

increased from 8px to 32px for the minimum bound and from 8px to 46px for the maximum bound

(and this was over a larger range of altitudes). The power nature of this increase (observed in Figure 37

and Figure 38) is also expected as it mimics the power nature of the calibration. The reason for the
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greater uncertainty with the rectangle target is proposed to be due to the possibility for the orientation

to change, which, with pronounced effects from the low resolution, results in poor rasterisation along

the edges when they are diagonal compared to when they are vertical or horizontal. Conversely,

the disk target appears almost identical for all orientations, since it is continuously symmetric and

proportional and, thus, its uncertainty will be mostly independent from orientation.

7.2 VISUAL SERVOING PERFORMANCE

With the grayscale processing and calibration of the Pi Camera to use the pinhole camera model, the

real-time target detection and tracking was implemented with the Crazyflie mirroring the motion of

the target while maintaining the altitude of the Pi Camera. The take off of the Crazyflie was occa-

sionally erratic with large variations in the latitude and longitude positions as it ascended. There was

also initial overshooting before reaching the desired altitude, where the actual percentage difference

in the overshoot averaged at 14.70% over all of the tests with a fairly consistent trend among the tests,

which is expected since this is an independent event only associated with the take off before the target

begins any motion. Nevertheless, this behaviour did not affect the operation once it had reached the

desired altitude and, accordingly, the main substance of the results were not affected.

During the target detection and tracking, the Crazyflie lagged slightly behind the target in terms of

position with an average of 0.838s for the translation tests and 0.415s for the rotation tests. A lag is

expected since each frame is being processed for 0.33s on average and then the generated setpoint

needs to be sent wirelessly over the Crazyradio to the Crazyflie which then needs to be processed

internally. The reason for the difference in lag between the translation tests and rotation tests is due to

the slower speed of the target in terms of pixels in the rotation tests compared to the translation tests.

Elaborating, the maximum speed of the target was 0.215m/s in the translation tests which converts to

50.8px/s at an altitude of 480mm or 31.3px/s at an altitude of 780mm; and the maximum speed of

the target was 10o/s in the rotation tests which converts to 24.8px/s at an altitude of 380mm. Notably,

the speed of the target in both cases is appropriately less than the 1.41m/s maximum speed of the

Crazyflie, so the lag was not influenced by the target moving faster than the Crazyflie is capable.

Due to the lag between the Crazyflie and target, there were substantial deviations in position or yaw

orientation experienced. The maximum position deviation reached 269mm with an average devi-

ation of 83.4mm considering the translation tests, and the minimum and maximum yaw orientation

deviations reached 9.54o and 9.87o respectively considering the rotation tests. However, for a fair

conclusion, the deviations in position and yaw orientation should be compared after the lag has been

compensated. As a result, the maximum position deviation is reduced to 138mm with an average de-

viation of 54.0mm, and the minimum and maximum yaw orientation deviations are also diminished

considerably to 4.76o and 4.46o respectively. While viewing the plots of the position of the target

and Crazyflie in Figure 42 to Figure 49 for subsequent trials, it is also evident that there is repeatable

performance from the control script with consistent performance across each of the tests.
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With regards to altitude, the Crazyflie maintained average altitudes of 373mm, 496mm, 558mm, and

787mm, for the expected altitudes of 380mm, 480mm, 580mm, and 780mm respectively (although

the expected altitudes were not measured during operation). During each of the tests, the Crazyflie

performed well in sustaining these average altitude with minor variances, where the typical minimum

bound was only as low as 3.75% below the average value and the typical maximum bound was only

as high as 3.98% above the average value based on an average of actual percentage differences.

7.3 OTHER FINDINGS AND REMARKS

There are multiple sources causing minor uncertainty in the results, such as the slight inaccuracy

in measuring the target dimensions at ±1mm, discretization error and noise from the low resolution

of the captured frames, altitude measurement error in calibrating the Pi Camera at ±5mm, use of

underlying velocity setpoints by the Crazyflie to accomplish position setpoints, and reconstruction

of the target position which consisted of error accumulation from its interdependent sources. The

primary contributor to uncertainty is the measurement accuracy of the motion capture system, where

the exact uncertainty is not precisely known but it is on the order of millimetres. For consolation, the

important results are several orders of magnitude above this scale and can reasonably be assumed to

be mostly insensitive to discrepancies presented by the motion capture system.

Although there were many sources of uncertainty, the control script was found to be reasonably

robust, as long as the target is the largest contour within the captured frame for grayscale processing

or no similar colours appeared within the captured frame for colour processing. With very minimal

modification to its current form, the control script can also be suitable for an implementation of

autonomous landing, where the desired location for landing is marked by the target and detected

through target detection with the Crazyflie then moving to this location to land - in essence, this is

already being performed since the Crazyflie is landing at the final location of the target.

Thus, this overall implementation serves as a fairly successful proof of concept for target detection and

tracking in three-dimensions using a single camera and hardware with marginal computational effort.

With expansion, the possible uses include indoor sports arenas, storage warehouses, manufacturing

or assembly workshops, and other applications in buildings requiring target tracking, surveillance, or

monitoring - although it is recommended for the quadrotor to frequently return to the initial origin

to recalibrate and account for any accumulation of error in position. Finally, despite a one-to-one

mapping being pursued where the Crazyflie directly mirrored the target, it is also easily adaptable

to use a different mapping, such as one-to-two, where the Crazyflie moves twice the distance of the

target, or inverse mapping, where the Crazyflie moves in the opposite direction to the target.

8 CONCLUSIONS

An investigation into position-based visual servoing through end-point open-loop control was con-

ducted for estimation of the three-dimensional position and yaw orientation of a moving target using
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a single camera, where a Crazyflie then tracked this position and yaw orientation autonomously. Ad-

ditionally, inexpensive and low-end hardware with marginal computational effort was used in the

form of a Raspberry Pi and Pi Camera for lightweight image processing with OpenCV. From the

implementation, the following conclusions can be summarised in relation to the objectives:

• The pinhole camera model is valid and can be successfully implemented using the Pi Camera at

a resolution of 160px by 120px which results in a focal length of approximately 113.5px. There

were no major distortions experienced and compensation was not required.

• Comparing the resolutions of 160px by 120px, 320px by 240px, and 640px by 480px, it was

found that the most satisfactory resolution was 160px by 120px with the capability to generate

setpoints at a frequency of 30.1Hz. Moreover, when considering the minimum processing re-

quired, it is evident that the grayscale processing allows for an increased frame rate compared to

colour processing by an average actual percentage difference of 23.2% across the resolutions of

160px by 120px, 320px by 240px, and 640px by 480px (this equivalently corresponds with an

average actual percentage difference of 23.2% in the number of setpoints generated), while also

eliminating more background noise for a more accurate interpretation of the target.

• Through calibrating the Pi Camera based on the pinhole camera model, the three-dimensional

position of the target relative to the camera can be successfully described through computer vis-

ion techniques for target detection with the centroid of the target providing latitude and longitude

coordinates and the area of the target providing the altitude of the camera. The yaw orientation

can also be estimated based on the area of the target when using a disproportioned target. End-

point open-loop visual servoing can then be executed, such that the Crazyflie is controlled to

remotely mirror the translational and rotational motion of the target and maintain the altitude of

the camera by generating setpoints on the Raspberry Pi with transmission over the Crazyradio.

• The real-time effectiveness of the end-point open-loop visual servoing exhibited an average lag

of 0.732s, average position deviations of 83.4mm, minimum yaw orientation deviation of 9.54o,

and maximum yaw orientation deviation of 9.87o. However, if the average lag is compensated in

each test, the average position deviation reduces to only 54.0mm, while the minimum and max-

imum yaw orientation deviations reduce to only 4.76o and 4.46o respectively. An altitude could

also be maintained fairly successfully, where the Crazyflie only drifted by 3.75% downwards or

3.98% upwards on average before returning to the correct altitude.

9 RECOMMENDATIONS

The following points are recommended for further research and development:

• Although it did not affect the results and conclusions, it may be helpful to revise the take off

function in the control script for smoother behaviour if further testing is to be performed.

• The tests should be repeated in a larger environment to gauge the capability for expansion. This

will involve calibrating the camera for different altitudes and possibly using a larger target.
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• Additional tests should also be performed in a variety of uncontrolled environments which con-

tain minor obstacles, such as outdoors with effects on the flight control from inconsistent wind

and effects on the target detection from a greater variation in background colours and textures.

• The control script can be adapted to function with multiple targets and quadrotors, where each

target is uniquely identified and assigned to a specific quadrotor to follow the motion.

• The target could move at higher speeds to highlight the effect this will have on the lag and

whether the computational effort of the Raspberry Pi has a direct influence in this situation.

• For faster execution, the commands for the Crazyflie and image processing in OpenCV could be

rewritten and performed natively in C and C++, which are generally considered to require less

computational time than Python since C and C++ are compiled while Python is interpreted.

• An infra-red camera, as is traditional for motion capture systems, can be investigated for use

in darker environments or when there is noise from changing lighting. The Raspberry Pi NoIR

Camera Module 2.1 is a suitable infra-red camera and is compatible with the current setup.

• Using a larger quadrotor, the camera can be mounted and end-point closed-loop could be per-

formed with the quadrotor directly tracking the target. This was partially developed to comple-

ment the completed research, as documented in Appendix E, but it was not possible to get the

quadrotor to fly safely after several attempts and a reasonable amount of effort.

• Finally, there is an opportunity to research artificial intelligence and deep learning algorithms,

such as a convolutional neural network, for more controlled and accurate results compared to the

pinhole camera model, although this will likely require greater computational effort.
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A ADDITIONAL RESOURCES

For supplement to the presented data, online resources containing additional data which are not of an

appropriate form for presentation in a report are available at: https://drive.google.com/open?

id=1wsVvasJ_MfNI8SphguZh88tsmAFaG_MC (access is limited to accounts linked to the University

of the Witwatersrand unless permission is requested). Since the Bitcraze Crazyflie 2.1, Bitcraze Flow

V2 expansion deck, Bitcraze Crazyradio PA, Raspberry Pi Zero W 1.1, and Raspberry Pi Camera

Module 2.1 are open-source, the electronic schematics for the hardware are freely available and have

been compiled with these other online resources if reference is desired.

B CONTROL SCRIPTS

Firstly, the installation of the required packages is as follows for Raspbian (and other similar Debian-

based linux distributions with the Apt 1.8.2 package manager) before utilising the Crazyflie Python

API library, Crazyflie graphical client, and OpenCV Python API library. (The Raspberry Pi must be

booted with the Crazyradio inserted otherwise it will not be detected correctly).

sudo apt install python3

sudo apt install python3-pip

sudo apt install python3-libusb1

sudo apt install python3-pyqt5

pip3 install numpy # sudo apt install python3-numpy

pip3 install opencv-python # sudo apt install python3-opencv

pip3 install cflib

pip3 install PyUSB

pip3 install appdirs

pip3 install PyYAML

The subsequent Python script with OpenCV was used to evaluate the real-time performance for image

processing by comparing resolutions of 160px by 120px, 320px by 240px, and 640px by 480px with

both grayscale and colour processing. The presented form of the code is for the maximum grayscale

processing - for the other processing tests, the relevant lines marked with ## must be uncommented.

As discussed, a resolution around 160px by 120px was only suitable with the Raspberry Pi.

1 # **********************************************************************************

2 # Date: 2019-09-30. Author: Edward Rycroft. Description: This program is used to

> evaluate the grayscale and colour image processing at different resolutions.

3 # **********************************************************************************

4

5 # ----------------------------------------------------------------------------------

6 # Import Files
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7 # ----------------------------------------------------------------------------------

8

9 # Import the necessary libraries (note the changes of names).

10 import time

11 import numpy as np

12 import cv2 as cv

13

14 # ----------------------------------------------------------------------------------

15 # Target Detection Functions

16 # ----------------------------------------------------------------------------------

17

18 # Function to perform grayscale image processing.

19 def processing_gray (frame):

20

21 # Convert the frame to grayscale, apply a threshold or mask with the limit

> tuned for the target, and apply an open morphology transformation.

22 mode = cv.cvtColor (frame, cv.COLOR_BGR2GRAY)

23 #mode = cv.blur (mode, (5, 5))

24 ret, threshold = cv.threshold (mode, 150, 255, cv.THRESH_BINARY)

25 kernel = np.ones ((5, 5), np.uint8)

26 morphology = cv.morphologyEx (threshold, cv.MORPH_OPEN, kernel)

27

28 # Return the relevant variables to store.

29 return frame, mode, threshold, morphology

30

31 # Function to perform colour image processing.

32 def processing_colour (frame):

33

34 # Convert the frame to hue-lightness-saturation, apply a threshold or mask with

> the limits tuned for the target, and apply an open morphology transformation.

35 mode = cv.cvtColor (frame, cv.COLOR_BGR2HLS)

36 #mode = cv.blur (mode, (5, 5))

37 lower_colour = np.array ([150, 40, 40])

38 upper_colour = np.array ([210, 250, 250])

39 threshold = cv.inRange (mode, lower_colour, upper_colour)

40 kernel = np.ones ((5, 5), np.uint8)

41 morphology = cv.morphologyEx (threshold, cv.MORPH_OPEN, kernel)

42

43 # Return the relevant variables to store.

44 return frame, mode, threshold, morphology

45

46 # Function to detect the centroid of the target.

47 def target_detection (frame, processed):

48

65



49 # Find and identify the contours within the current frame.

50 image, contours, hierarchy = cv.findContours (threshold, cv.RETR_TREE,

> cv.CHAIN_APPROX_SIMPLE) # This line should be used for OpenCV Python 3.X.

51 #contours, hierarchy = cv.findContours (processed, cv.RETR_TREE,

> cv.CHAIN_APPROX_SIMPLE) # This line should be used for OpenCV Python 4.X.

52 #temporary = cv2.findContours (des, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) #

> With the line below, this line could be used for OpenCV Python 3.X or 4.X.

53 #contours = temporary [0] if len (temporary) == 2 else temporary [1]

54

55 # Locate the largest contour and find the corresponding properties. Note that

> the image moments are simply weighted averages based on the pixel intensities.

56 if len (contours) != 0:

57 maximum = max (contours, key = cv.contourArea)

58 moment = cv.moments (maximum)

59 centroid_x = int (moment ["m10"] / moment ["m00"])

60 centroid_y = int (moment ["m01"] / moment ["m00"])

61 x, y, w, h = cv.boundingRect (maximum)

62 angled = cv.minAreaRect (maximum)

63 box = np.int0 (cv.boxPoints (angled))

64 cv.rectangle (frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

65 cv.drawContours (frame, [box], 0, (0, 0, 255), 2)

66 cv.circle (frame, (centroid_x, centroid_y), 3, (255, 0, 0), 5)

67 else:

68 centroid_x = 0

69 centroid_y = 0

70

71 # Draw a coordinate system and timestamp to the current frame.

72 time = str (np.around (time.time () - time_start, decimals = 1))

73 cv.putText (frame, time, (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)

74 cv.circle (frame, (int (res_x / 2), int (res_y / 2)), 5, (255, 255, 255), 5)

75

76 # Return the relevant variables to store.

77 return frame, contours, centroid_x, centroid_y

78

79 # Function to record and display the basic output as a video.

80 def record_minimum (frame, record):

81

82 # Record (optional) and display the basic output.

83 if record == "Y":

84 video.write (frame)

85 cv.imshow ("Original Output", frame)

86

87 # Function to record and display the complete output as a video.

88 def record_maximum (frame, mode, threshold, morphology, record, contours):
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89

90 # Combine the processed frames into a single frame.

91 if np.size (mode) == res_x * res_y:

92 mode = cv.merge ([mode, mode, mode])

93 elif np.size (mode) == res_x * res_y * 3:

94 mode = cv.cvtColor (mode, cv.COLOR_HLS2BGR)

95 mode = cv.bitwise_and (mode, mode, mask = morphology)

96 threshold = cv.merge ([threshold, threshold, threshold])

97 morphology = cv.merge ([morphology, morphology, morphology])

98 if len (contours) != 0:

99 cv.drawContours (morphology, contours, -1, (255, 0, 0), 2)

100 output = np.zeros ((res_y * 2, res_x * 2, 3), dtype = "uint8")

101 output [0:res_y, 0:res_x] = frame

102 output [0:res_y, res_x:(res_x * 2)] = mode

103 output [res_y:(res_y * 2), 0:res_x] = threshold

104 output [res_y:(res_y * 2), res_x:(res_x * 2)] = morphology

105

106 # Record (optional) and display the combined output.

107 if record == "Y":

108 video.write (output)

109 cv.imshow ("Combined Output", output)

110

111 # ----------------------------------------------------------------------------------

112 # Define Variables

113 # ----------------------------------------------------------------------------------

114

115 # Set the variables for target detections.

116 print ("Setting the variables to be used.")

117 res_x = 160 # 320 # 640

118 res_y = 120 # 240 # 480

119 fps = 30

120

121 # Find basic requirements from the user.

122 record = input ("Must the source be recorded as a video? [Y/N] ")

123 if record == "Y":

124 version = input ("Must basic [B] or combined [C] output be recorded? [B/C] ")

125 if version != "B" and version != "C":

126 print ("! The input for the version is invalid. Quitting the program.")

127 raise SystemExit

128 elif record != "N":

129 print ("! The input to record the source is invalid. Quitting the program.")

130 raise SystemExit

131

132 # ----------------------------------------------------------------------------------
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133 # Perform Checks

134 # ----------------------------------------------------------------------------------

135

136 # Identify the source for use and recording if desired.

137 print ("Identifying the source for use and recording if desired.")

138 source = cv.VideoCapture (0)

139 source.set (cv.CAP_PROP_FRAME_WIDTH, res_x) # Alternate identifier: 3.

140 source.set (cv.CAP_PROP_FRAME_HEIGHT, res_y) # Alternate identifier: 4.

141 if record == "Y":

142 codec = cv.VideoWriter_fourcc (*"XVID")

143 if version == "B":

144 video = cv.VideoWriter ("Out.avi", codec, fps, (res_x, res_y), True)

145 elif version == "C":

146 video = cv.VideoWriter ("Out.avi", codec, fps, (res_x * 2, res_y * 2), True)

147

148 # Ensure the source is open and available.

149 active = True

150 strikes = 0

151 if source.isOpened == False:

152 print ("! The source is not open. Trying to open the source.")

153 source.Open ()

154 if source.isOpened == False:

155 print ("The source is not open.")

156 active == False

157 elif source.isOpened == True:

158 print ("The source is open and available.")

159

160 # Check that the source is operating correctly.

161 print ("Checking that the source is operating correctly.")

162 check = input ("Should the source be checked to be capturing correctly? [Y/N] ")

163 if check == "Y":

164 correct, frame = source.read ()

165 if correct == False:

166 print ("A frame could not be read correctly.")

167 correct = "N"

168 elif correct == True:

169 cv.imshow ("Image Test", frame)

170 cv.waitKey (1)

171 correct = input ("Is the capture displayed correctly? [Y/N] ")

172 if correct == "N":

173 print ("! The capture is not operating correctly.")

174 active = False

175 cv.destroyAllWindows ()

176
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177 # ----------------------------------------------------------------------------------

178 # Main Project Loop

179 # ----------------------------------------------------------------------------------

180

181 # Begin capture of the video frames and image processing.

182 print ("Beginning capture of the video frames and image processing.")

183 print ("To terminate the capture, press [Q] in the video window.")

184 time_start = time.time ()

185 while active == True:

186

187 # Load the current frame from the source.

188 correct, frame = source.read ()

189

190 # A: No processing with only basic video capture.

191 ##record_minimum (frame, record)

192

193 # B: Minimum grayscale processing with results video capture.

194 ##frame, mode, threshold, morphology = processing_gray (frame)

195 ##frame, contours, centroid_x, centroid_y = target_detection (frame, morphology)

196 ##record_minimum (frame, record)

197

198 # C: Maximum grayscale processing with complete video capture.

199 frame, mode, threshold, morphology = processing_gray (frame)

200 frame, contours, centroid_x, centroid_y = target_detection (frame, morphology)

201 record_maximum (frame, mode, threshold, morphology, record, contours)

202

203 # D: Minimum colour processing with results video capture.

204 ##frame, mode, threshold, morphology = processing_colour (frame)

205 ##frame, contours, centroid_x, centroid_y = target_detection (frame, morphology)

206 ##record_minimum (frame, record)

207

208 # E: Maximum colour processing with complete video capture.

209 ##frame, mode, threshold, morphology = processing_colour (frame)

210 ##frame, contours, centroid_x, centroid_y = target_detection (frame, morphology)

211 ##record_maximum (frame, mode, threshold, morphology, record, contours)

212

213 # Look for the designated key to terminate the capture.

214 key = cv.waitKey (1)

215 if key == ord ("Q"):

216 active = False

217

218 time_end = time.time ()

219

220 # ----------------------------------------------------------------------------------
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221 # Finishing Commands

222 # ----------------------------------------------------------------------------------

223

224 # Terminate the capture and release the source.

225 print ("Terminating the capture and releasing the source.")

226 source.release ()

227 if record == "Y":

228 print ("The output video is ’Out.avi’ in the current directory.")

229 video.release ()

230 cv.destroyAllWindows ()

231

232 # Review the details of the captured output.

233 if record == "Y":

234 print ("Review of the details of the capturing process:")

235 video = cv.VideoCapture ("Out.avi")

236 time_record = (time_end - time_start)

237 total_frames = int (video.get (cv.CAP_PROP_FRAME_COUNT))

238 print (" Horizontal Resolution:", res_x, "pixels.")

239 print (" Vertical Resolution:", res_y, "pixels.")

240 print (" Total Recording Time:", "{0:.2f}".format (time_record), "seconds.")

241 print (" Total Frames:", total_frames, "frames.")

242 try:

243 fps_avg = total_frames / time_record

244 spf_avg = 1 / fps_avg

245 print (" Average FPS: ", "{0:.2f}".format (fps_avg), "frames per second.")

246 print (" Average SPF:", "{0:.4f}".format (spf_avg), "seconds per frame.")

247 except ZeroDivisionError:

248 print (" ! The resolution passed for capture does not match the output.")

249 print (" ! The average frame rate values could not be determined.")

250 fps_avg = 0

251 spf_avg = 0

252

253 # ----------------------------------------------------------------------------------

254 # End

255 # ----------------------------------------------------------------------------------

For altitude calibration, the above script was modified with print(cv.contourArea(maximum))

within the target_detection function to display the target area in pixels, while maximum grayscale

processing monitored the target as it was positioned and the altitude of the camera was varied. As

mentioned, this printing to the shell dramatically slowed execution with a noticeable lag.

The final script for target detection and tracking is presented below, where further optimisations have

also been performed after the script for the resolution tests and altitude calibration to make the code
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more efficient and robust. An optimisation which was not exploited, as it was not necessary, is the

idea to restrict the region in which to look for the target based on the detected location of the target in

the previous frame, such that even less computational effort would be required as a result.

1 # ********************************************************************************

2 # Date: 2019-18-10. Author: Edward Rycroft. Description: This program is used to

> perform visual servoing through end-point open-loop control using a Raspberry Pi

> and Pi Camera for image processing with OpenCV and a Crazyflie to mirror the

> relative position of a moving target for effective target detection and tracking.

3 # ********************************************************************************

4

5 # --------------------------------------------------------------------------------

6 # Import Files

7 # --------------------------------------------------------------------------------

8

9 # Import the necessary libraries (note the changes of names).

10 import time

11 import logging

12 import numpy as np

13 import cv2 as cv

14 import cflib.crtp

15 from cflib.crazyflie import Crazyflie

16 from cflib.crazyflie.log import LogConfig

17 from cflib.crazyflie.syncCrazyflie import SyncCrazyflie

18 from cflib.crazyflie.syncLogger import SyncLogger

19

20 # --------------------------------------------------------------------------------

21 # Target Detection And Tracking Functions

22 # --------------------------------------------------------------------------------

23

24 # Function to perform grayscale image processing.

25 def processing_gray (frame):

26

27 # Convert the frame to grayscale, apply a threshold or mask with the limit

> tuned for the target, and apply an open morphology transformation.

28 mode = cv.cvtColor (frame, cv.COLOR_BGR2GRAY)

29 #mode = cv.blur (mode, (5, 5))

30 ret, threshold = cv.threshold (mode, 200, 255, cv.THRESH_BINARY)

31 kernel = np.ones ((5, 5), np.uint8)

32 morphology = cv.morphologyEx (threshold, cv.MORPH_OPEN, kernel)

33

34 # Return the relevant variables to store.

35 return frame, mode, threshold, morphology
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36

37 # Function to perform colour image processing.

38 def processing_colour (frame):

39

40 # Convert the frame to hue-lightness-saturation, apply a threshold or mask with

> the limits tuned for the target, and apply an open morphology transformation.

41 mode = cv.cvtColor (frame, cv.COLOR_BGR2HLS)

42 #mode = cv.blur (mode, (5, 5))

43 lower_colour = np.array ([150, 40, 40])

44 upper_colour = np.array ([210, 250, 250])

45 threshold = cv.inRange (mode, lower_colour, upper_colour)

46 kernel = np.ones ((5, 5), np.uint8)

47 morphology = cv.morphologyEx (threshold, cv.MORPH_OPEN, kernel)

48

49 # Return the relevant variables to store.

50 return frame, mode, threshold, morphology

51

52 # Function to detect the centroid and area of the target.

53 def target_detection (frame, morphology, time_start, res_x, res_y):

54

55 # Find and identify the contours within the current frame.

56 image, contours, hierarchy = cv.findContours (threshold, cv.RETR_TREE,

> cv.CHAIN_APPROX_SIMPLE) # This line should be used for OpenCV Python 3.X.

57 #contours, hierarchy = cv.findContours (processed, cv.RETR_TREE,

> cv.CHAIN_APPROX_SIMPLE) # This line should be used for OpenCV Python 4.X.

58 #temporary = cv2.findContours (des, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) #

> With the line below, this line could be used for OpenCV Python 3.X or 4.X.

59 #contours = temporary [0] if len (temporary) == 2 else temporary [1]

60

61 # Locate the largest contour and find the corresponding properties.

62 try:

63 maximum = max (contours, key = cv.contourArea)

64 moment = cv.moments (maximum)

65 centroid_x = int (moment ["m10"] / moment ["m00"])

66 centroid_y = int (moment ["m01"] / moment ["m00"])

67 area = cv.contourArea (maximum)

68 x, y, w, h = cv.boundingRect (maximum)

69 cv.rectangle (frame, (x, y), (x + w, y + h), (0, 255, 0), 2)

70 cv.circle (frame, (centroid_x, centroid_y), 3, (255, 0, 0), cv.FILLED)

71 area = cv.contourArea (maximum)

72 transform_x = int (res_x / 2) - centroid_y

73 transform_y = int (res_y / 2) - centroid_x

74 except:

75 area = 1
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76 transform_x = 0

77 transform_y = 0

78

79 # Draw a coordinate system and timestamp to the current frame.

80 time_current = np.around (time.time () - time_start, decimals = 1)

81 cv.putText (frame, str (time_current), (10, 30), cv.FONT_HERSHEY_SIMPLEX, 1,

> (255, 255, 255), 2) # (10, 30) = Top-Left Corner

82 cv.circle (frame, (int (res_x/2), int (res_y/2)), 5, (255, 255, 255), cv.FILLED)

83

84 # Return the relevant variables to store.

85 return frame, contours, transform_x, transform_y, area

86

87 # Function to detect the yaw orientation of the target.

88 def target_detection_orientation (frame, contours):

89

90 # Locate the largest contour and find the corresponding properties. Note that

> the image moments are simply weighted averages based on the pixel intensities.

91 try:

92 maximum = max (contours, key = cv.contourArea)

93 x, y, w, h = cv.boundingRect (maximum)

94 bounds = cv.minAreaRect (maximum)

95 orientation = bounds [2]

96 if bounds [1][0] < bounds [1][1]: # width < height

97 orientation = - orientation

98 else:

99 orientation = - orientation - 90

100 box = np.int0 (cv.boxPoints (bounds))

101 cv.drawContours (frame, [box], 0, (0, 0, 255), 2)

102 except:

103 orientation = 0

104

105 # Return the relevant variables to store.

106 return frame, orientation

107

108 # Function to record and display the basic output as a video.

109 def monitor_minimum (frame, record):

110

111 # Record (optional) and display the basic output.

112 if record == "Y":

113 video.write (frame)

114 cv.imshow ("Original Output", frame)

115

116 # Function to record and display the complete output as a video.

117 def monitor_maximum (frame, mode, threshold, morphology, record, contours):
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118

119 # Combine the processed frames into a single frame.

120 if np.size (mode) == res_x * res_y:

121 mode = cv.merge ([mode, mode, mode])

122 elif np.size (mode) == res_x * res_y * 3:

123 mode = cv.cvtColor (mode, cv.COLOR_HLS2BGR)

124 mode = cv.bitwise_and (mode, mode, mask = morphology)

125 threshold = cv.merge ([threshold, threshold, threshold])

126 morphology = cv.merge ([morphology, morphology, morphology])

127 if len (contours) != 0:

128 cv.drawContours (morphology, contours, -1, (255, 0, 0), 2) # cv.FILLED

129 output = np.zeros ((res_y * 2, res_x * 2, 3), dtype = "uint8")

130 output [0:res_y, 0:res_x] = frame

131 output [0:res_y, res_x:(res_x * 2)] = mode

132 output [res_y:(res_y * 2), 0:res_x] = threshold

133 output [res_y:(res_y * 2), res_x:(res_x * 2)] = morphology

134

135 # Record (optional) and display the combined output.

136 if record == "Y":

137 video.write (output)

138 cv.imshow ("Combined Output", output)

139

140 # Function to print the characteristics of the target centroid.

141 def monitor_text (centroid_x, centroid_y, altitude, orientation):

142

143 # Print the target characteristics to the shell.

144 print ("Centroid X: ", centroid_x)

145 print ("Centroid Y: ", centroid_y)

146 print ("Altitude: ", "{0:.2f}".format (altitude))

147 print ("Orientation: ", "{0:.2f}".format (orientation))

148 print ("")

149

150 # --------------------------------------------------------------------------------

151 # Crazyflie Control Functions

152 # --------------------------------------------------------------------------------

153

154 # Function to update the position estimator after the extend Kalman filter is reset.

155 def wait_for_position_estimator (crazyflie):

156

157 # Print an update to the shell for monitoring.

158 print ("Waiting for estimator to calibrate the current state.")

159

160 # Set up logging and add the variables to log for updating.

161 log_config = LogConfig (name = "Kalman Variance", period_in_ms = 500)
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162 log_config.add_variable ("kalman.varPX", "float")

163 log_config.add_variable ("kalman.varPY", "float")

164 log_config.add_variable ("kalman.varPZ", "float")

165 var_y_history = [1000] * 10

166 var_x_history = [1000] * 10

167 var_z_history = [1000] * 10

168

169 # Define a threshold for maximum and minimum variations.

170 threshold = 0.001

171

172 # Begin logging the added variables.

173 with SyncLogger (crazyflie, log_config) as logger:

174 for log_entry in logger:

175

176 # Append the current values to the stored history.

177 data = log_entry [1]

178 var_x_history.append (data ["kalman.varPX"])

179 var_x_history.pop (0)

180 var_y_history.append (data ["kalman.varPY"])

181 var_y_history.pop (0)

182 var_z_history.append (data ["kalman.varPZ"])

183 var_z_history.pop (0)

184

185 # Compare the maximum and minimum variations until within the threshold.

186 minimum_x = min (var_x_history)

187 maximum_x = max (var_x_history)

188 minimum_y = min (var_y_history)

189 maximum_y = max (var_y_history)

190 minimum_z = min (var_z_history)

191 maximum_z = max (var_z_history)

192 if (maximum_x - minimum_x) < threshold and (maximum_y - minimum_y) <

> threshold and (maximum_z - minimum_z) < threshold:

193 break

194

195 # Function to set a custom initial position.

196 def set_initial_position (crazyflie, initial_x, initial_y, initial_z, initial_yaw):

197

198 # Print an update to the shell for monitoring.

199 print ("Setting the initial position to (", initial_x, ",", initial_y, ",",

> initial_z, ") at ", initial_yaw, " radians.")

200

201 # Setting the initial position.

202 crazyflie.param.set_value ("kalman.initialX", initial_x)

203 crazyflie.param.set_value ("kalman.initialY", initial_y)
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204 crazyflie.param.set_value ("kalman.initialZ", initial_z)

205 crazyflie.param.set_value ("kalman.initialYaw", initial_yaw)

206

207 # Function to set the initial position as the origin.

208 def set_initial_position_origin (crazyflie):

209

210 # Print an update to the shell for monitoring.

211 print ("Setting the initial position as the origin (0,0,0) at 0 radians.")

212

213 # Setting the initial position.

214 crazyflie.param.set_value ("kalman.initialX", "0")

215 crazyflie.param.set_value ("kalman.initialY", "0")

216 crazyflie.param.set_value ("kalman.initialZ", "0")

217 crazyflie.param.set_value ("kalman.initialYaw", "0")

218

219 # Function to reset the extended Kalman filer.

220 def reset_estimator (crazyflie):

221

222 # Print an update to the shell for monitoring.

223 print ("Resetting the extended Kalman filter for a clean state.")

224

225 # Reset the extended Kalman filter and update the position estimator.

226 crazyflie.param.set_value ("kalman.resetEstimation", "1")

227 time.sleep (0.1)

228 crazyflie.param.set_value ("kalman.resetEstimation", "0")

229 wait_for_position_estimator (crazyflie)

230

231 # Function to vertically take off the Crazyflie.

232 def take_off (crazyflie, altitude):

233

234 # Print an update to the shell for monitoring.

235 print ("Crazyflie is taking off to the starting altitude.")

236

237 # Define the desired time in which to move and the number of setpoints to send.

238 action_time = 1

239 setpoint_time = 0.05

240 steps = int (action_time / setpoint_time)

241

242 # Loop to send the required setpoint at the desired time intervals.

243 for i in range (steps):

244 crazyflie.commander.send_hover_setpoint (0, 0, (altitude / steps * i), 0)

245 time.sleep (setpoint_time)

246

247 # Ensure the Crazyflie has reached the desired altitude.
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248 crazyflie.commander.send_hover_setpoint (0, 0, 0, altitude)

249 time.sleep (setpoint_time)

250

251 # Function to vertically land the Crazyflie.

252 def land (crazyflie, altitude):

253

254 # Print an update to the shell for monitoring.

255 print ("Crazyflie is landing from the current altitude.")

256

257 # Define the desired time in which to move and the number of setpoints to send.

258 action_time = 1

259 setpoint_time = 0.05

260 steps = int (action_time / setpoint_time)

261

262 # Loop to send the required setpoint at the desired time intervals.

263 for i in range (steps):

264 crazyflie.commander.send_hover_setpoint (0, 0, (- altitude / steps * i), 0)

265 time.sleep (setpoint_time)

266

267 # Ensure the Crazyflie has landed and becomes stationary.

268 crazyflie.commander.send_stop_setpoint ()

269 time.sleep (setpoint_time)

270

271 # --------------------------------------------------------------------------------

272 # Define Variables

273 # --------------------------------------------------------------------------------

274

275 # Set the variables for target detection and tracking.

276 print ("Setting the variables to be used.")

277 res_x = 160

278 res_y = 120

279 fps = 30

280 time_start = 0

281

282 # Set the variables for Crazyflie communication control.

283 uri = "radio://0/80/2M/E7E7E7E7E8"

284 logging.basicConfig (level = logging.ERROR)

285 crazyflie = Crazyflie (rw_cache = "./cache")

286

287 # Set the variables for the initial setup before tracking.

288 altitude = 0.4

289 yaw = 0

290 #velocity_max = 0.4

291 focal_length = 113.5
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292

293 # Find basic requirements from the user.

294 record = input ("Must the source be recorded as a video? [Y/N] ")

295 if record == "Y":

296 version = input ("Must basic [B] or combined [C] output be recorded? [B/C] ")

297 if version != "B" and version != "C":

298 print ("! The input for the recording version is invalid.")

299 raise SystemExit

300 elif record != "N":

301 print ("! The input for the recording of the source is invalid.")

302 raise SystemExit

303

304 # --------------------------------------------------------------------------------

305 # Perform Checks

306 # --------------------------------------------------------------------------------

307

308 # Identify the source for use and recording if desired.

309 print ("Identifying the source for use and recording if desired.")

310 source = cv.VideoCapture (0)

311 source.set (cv.CAP_PROP_FRAME_WIDTH, res_x) # Alternate identifier: 3.

312 source.set (cv.CAP_PROP_FRAME_HEIGHT, res_y) # Alternate identifier: 4.

313 if record == "Y":

314 codec = cv.VideoWriter_fourcc (*"XVID")

315 if version == "B":

316 video = cv.VideoWriter ("Out.avi", codec, fps, (res_x, res_y), True)

317 elif version == "C":

318 video = cv.VideoWriter ("Out.avi", codec, fps, (res_x * 2, res_y * 2), True)

319

320 # Ensure the source is open and available.

321 active = True

322 strikes = 0

323 if source.isOpened == False:

324 print ("! The source is not open. Trying to open the source.")

325 source.Open ()

326 if source.isOpened == False:

327 print ("The source is not open.")

328 active == False

329 elif source.isOpened == True:

330 print ("The source is open and available.")

331

332 # Check that the source is operating correctly.

333 print ("Checking that the source is operating correctly.")

334 check = input ("Should the source be checked to be capturing correctly? [Y/N] ")

335 if check == "Y":
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336 correct, frame = source.read ()

337 if correct == False:

338 print ("A frame could not be read correctly.")

339 correct = "N"

340 elif correct == True:

341 cv.imshow ("Image Test", frame)

342 cv.waitKey (1)

343 correct = input ("Is the capture displayed correctly? [Y/N] ")

344 if correct == "N":

345 print ("! The capture is not operating correctly.")

346 active = False

347 cv.destroyAllWindows ()

348

349 # --------------------------------------------------------------------------------

350 # Main Project Loop

351 # --------------------------------------------------------------------------------

352

353 # Execute the functions to perform visual servoing and target tracking.

354 if __name__ == "__main__":

355

356 # Initialize the low-level drivers (do not list the debug drivers).

357 cflib.crtp.init_drivers (enable_debug_driver = False)

358

359 # Initialise the SyncCrazyflie class for function blockings.

360 with SyncCrazyflie (uri, cf = crazyflie) as crazyflie_sync:

361

362 # Set the parameters for control and rest the extended Kalman filter.

363 crazyflie = crazyflie_sync.cf

364 set_initial_position_origin (crazyflie)

365 reset_estimator (crazyflie)

366 #crazyflie.param.set_value ("posCtlPid.xyVelMax", "velocity_max")

367 #crazyflie.param.set_value ("posCtlPid.zVelMax", "velocity_max")

368 #crazyflie.commander.set_client_xmode (True)

369

370 # Load the current frame from the source and process the image. This is not

> for target detection, but acts as a buffer to load the video window.

371 correct, frame = source.read ()

372 frame, mode, threshold, morphology = processing_gray (frame)

373 frame, contours, centroid_x, centroid_y, area = target_detection (frame,

> morphology, time_start, res_x, res_y)

374 monitor_minimum (frame, record)

375 cv.waitKey (200)

376

377 # Record the current time as the start of the test.
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378 time_start = time.time ()

379

380 # Take off to an altitude of approximately 0.4m.

381 take_off (crazyflie, altitude)

382

383 # Begin capture of the video frames and image processing.

384 print ("Beginning capture of the video frames and image processing.")

385 print ("To terminate the capture, press [Q] in the video window.")

386 print ("Alternatively, press [ctrl+c] in the shell window.")

387 try:

388 while active == True:

389

390 # Load the current frame from the source.

391 correct, frame = source.read ()

392

393 # Minimum grayscale processing with results video capture.

394 frame, mode, threshold, morphology = processing_gray (frame)

395 frame, contours, centroid_x, centroid_y, area = target_detection

> (frame, morphology, time_start, res_x, res_y)

396 ##frame, orientation = target_detection_orientation (frame,

> contours) # Uncomment for yaw orientation tracking.

397 monitor_minimum (frame, record)

398

399 # Estimate the camera altitude and target centroid position.

400 if area < 100 or area > 1000:

401 print ("The detected area is inconsistent with expectations.")

402 land (crazyflie, position_z)

403 crazyflie.commander.send_stop_setpoint ()

404 active = False

405 break

406 position_z = 9.128 * area ** -0.484 # Disk Target

407 ##position_z = 13.47 * area ** -0.492 # Rectangle Target

408 position_x = centroid_x * (position_z / focal_length)

409 position_y = centroid_y * (position_z / focal_length)

410 ##yaw = orientation # Uncomment for yaw orientation tracking.

411

412 # Based on the target, send a position setpoint to the Crazyflie.

413 crazyflie.commander.send_position_setpoint (position_x, position_y,

> position_z, yaw)

414

415 # Display the target centroid position and camera altitude. This

> dramatically slows down video capture due to printing to the shell.

416 #monitor_text (centroid_x, centroid_y, position_z, orientation)

417
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418 # Look for the designated key to terminate the capture.

419 key = cv.waitKey (1)

420 if key == ord ("Q"):

421 print ("Termination key from [Q] was detected.")

422 land (crazyflie, position_z)

423 crazyflie.commander.send_stop_setpoint ()

424 active = False

425

426 # Look for the designated key to terminate the capture.

427 except KeyboardInterrupt:

428 print ("KeyboardInterrupt from [ctrl+c] was detected.")

429 land (crazyflie, altitude)

430 crazyflie.commander.send_stop_setpoint ()

431 active = False

432

433 time_end = time.time ()

434

435 # --------------------------------------------------------------------------------

436 # Finishing Commands

437 # --------------------------------------------------------------------------------

438

439 # Terminate the capture and release the source.

440 print ("Terminating the capture and releasing the source.")

441 source.release ()

442 if record == "Y":

443 print ("The output video is ’Out.avi’ in the current directory.")

444 video.release ()

445 cv.destroyAllWindows ()

446

447 # --------------------------------------------------------------------------------

448 # End

449 # --------------------------------------------------------------------------------

C ETHICS CONSIDERATIONS

For the completion of the project, there were no ethical considerations with regards to participants,

as the requisite knowledge, information, and resources was acquired through self-derived means in

the form of published research, online resources, and analytical calculations. Furthermore, the results

of the experiment were not doctored or plagiarized in any form so that the scientific method was

thoroughly and sufficiently followed. As evaluated during the project proposal by a member of the

School Ethics Committee, there were no ethical risks and ethical clearance was not required.
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D RISK ASSESSMENT

The following precautions must be followed throughout experimentation:

• At all times within the motion capture facilities, the operators, supervisors, and nearby bystand-

ers must wear the required personal protective equipment (PPE) in the form of a laboratory dust

coat, steel-toed boots, and eye protection to reduce risk in the event of a crash.

• There should be at least two operators or an operator and supervisor monitoring the Crazyflie.

• The environment must be clear of obstacles not involved in the tests with no debris or loose items

in the vicinity which could be unpredictably lifted by the thrust of the Crazyflie.

• The ground control laptop must be charged or charging before testing or charging while testing

to ensure it will not power off during a test while the Crazyflie is flying.

• The Raspberry Pi must also have a reliable power supply for the duration of testing.

• Before charging or testing, it must be ensured that the battery of the Crazyflie is not punctured

or swollen. If the battery is damaged in any way, a supervisor must be notified immediately.

• There must be no interference with the connections between the ground control laptop, Rasp-

berry Pi, and Crazyflie to ensure there will be no disconnections while the Crazyflie is flying.

• The state of the hardware should be visually checked before each test to ensure there are no

damages and the installation is still correct. This is specifically applicable to the propellers,

where damages may have occurred in previous tests, and the correct blades must be installed on

the correct rotors for clockwise or counter-clockwise rotation. For the Crazyflie, A, A1, or A2

indicate clockwise rotation and B, B1, or B2 indicate counter-clockwise rotation.

• At the start of a test, the battery of the Crazyflie should always be fully charged. If so, it must

also be ensured that the battery installation is correct and secure to the frame without metal or

sharp parts contacting the battery and without any possibility of a short-circuit occurring.

• Once the Crazyflie is placed on solid ground and powered on, the status LEDs should be check

for any errors detected while the firmware performs internal self-checks during start-up. For the

Crazyflie, the LEDs labelled M1 and M4 will indicate the result of the self-checks, where the M4

LED rapidly blinks green five times if the self-checks are passed or the M1 LED rapidly blinks

red five times then pauses and repeats again if the self-checks are failed. After the self-checks

have passed, the M1 LED should blink twice per second if the sensors are calibrated or the M1

LED will blink once every two seconds if the calibration failed (for calibration, the Crazyflie

must be still and the ground should be level). If the M4 LED is constantly red, the battery is low

and the Crazyflie should not be flown. The M2 and M3 LEDs should be constantly blue and are

not related to the self-checks (used to indicate orientation), unless in a different state for charging

or firmware flashing. The motors will also initially rotate in sequence to indicate operation.

• The control scripts on the Raspberry Pi must be checked and free from errors and warnings

before connecting to the Crazyflie. If unsure, the Crazyflie can be connected and the control
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scripts can be run while there are no propellers attached to the rotors or while safely holding the

Crazyflie to observe if there will be any unexpected behaviour (the Crazyflie should be gripped

firmly at the bottom of the frame to avoid the propellers).

• When it is ready for a test, the Crazyflie should be placed on solid and level ground with the

forward direction pointing away from the operators, supervisors, and nearby bystanders.

• When it begins flying for a test, the Crazyflie should start the motors, take off vertically, and

hover at a fixed position to ensure correct, controlled, and stable operation before continuing.

• Once the test is complete and the Crazyflie has landed with inactivity, the Raspberry Pi should be

disconnected and the battery of the Crazyflie should be removed (do not pull the battery cables).

The risks involved in the experiment have been identified and evaluated. This involved categorizing

the severity, likelihood, and type of the risks, and proposing precautionary actions to further prevent

the risks. The complete risk assessment is seen in Table 6 and the official standard operating procedure

in the motion capture facilities for quadrotor experiments is seen in Figure 51.

Table 6: Evaluation of the potential risks involved in the experiment.

Activity:

Venue:

Risk Type Risk Description Severity Likelihood Risk Score Action Type Action
Mechanical Due to a loss of control or unpredictable

behaviour, the Crazyflie may collide with
an operator or person in the vicinity of the
experiment. This is especially concerning
for the propellers possibly causing short-
term injuries to eyes.

Minor Possible 5 Procedure, 
PPE

Only necessary personnel should be
allowed within the motion capture
facilities and operating vicinity. Safety
glasses may also be worn within the
motion capture facilities.

Mechanical Hair or loose fitting clothing may become
caught or tangled in the motors and
propellers of the Crazyflie.

Minor Possible 5 PPE Hair must be tied up and loose clothing
must be sufficiently restricted.

Mechanical If the Crazyflie crashes, parts can be
dislodged and act as shrapnel.

Minor Rare 3 PPE Safety glasses may be worn within the
motion capture facilities.

Electrical Minor electric shocks may be experienced
from handling the Crazyflie and
Raspberry Pi, but the voltage and current
of these shocks are very minimal.

Minor Unlikely 4 Procedure In manufacturing and grounding, it is
unlikely for electrical shocks but the
Crazyflie and Raspberry Pi must still be
handled with care such that they are not
damaged and become hazardous.

Chemical The LiPo battery may erupt (fire,
explosions, and toxic smoke) if exposed
to high temperatures or penetrated, where
the lithium will be exposed which is
highly flammable and potentially
explosive when mixed with air and may
cause chemical burns. This may occur
during use, charging, or storage.

Major Possible 7 Modification The battery must be housed correctly
within the frame of the Crazyflie so
exposure is minimised in the event that it
unexpectedly erupts. The battery must be
check before and after each use. A good
quality and reliable battery must be used
from the Crazyflie suppliers.

Ergonomic The thrust of the Crazyflie may pick up
dust, which may be breathed in by or enter 
the eyes of the operator or personnel in
the operating vicinity.

Minor Rare 3 Elimination It should be ensured that the motion
capture facilities and operating vicinity
are sufficiently clean and dust-free.

Ergonomic To place the target and Crazyflie on the
floor, the operator is required to bend
down multiple times

Minor Rare 3 Procedure The operator must correctly bend with
their knees, instead of their back, to
avoid straining muscles.

Ergonomic The black mats in the motion capture
facilities form an uneven surface with the
ground, which lead to tripping.

Minor Rare 3 Procedure The operator must take care when
moving around the motion capture
facilities to avoid tripping.

Signed: Edward Rycroft Date: 2019/10/28

Quadrotor Visual Servoing For Moving Target Tracking

North West Engineering Laboratory, Robotics Lab
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Figure 51: Standard operating procedure in the motion capture facilities for quadrotor experiments.

E BIGQUAD DEVELOPMENT

To complement the end-point open-loop control, an investigation into end-point closed-loop control

was initially performed using a larger quadrotor, on-board camera with the Pi Camera, and on-board

processing with the Raspberry Pi. However, it was not possible for the quadrotor to fly safely due

to the risk of damaging the exposed LiPo battery, so focus was shifted to more in-depth end-point

open-loop control only. The partial development is included as a reference for future progress.

E.1 END-POINT CLOSED-LOOP CONTROL

For end-point closed-loop control, the basic arrangement for location estimation is essentially the

same as for end-point open-loop control, except the camera would be mounted to the quadrotor instead

of being fixed in the surroundings. This is illustrated in Figure 52, with similarity to Figure 13.

It might be necessary to investigate compensation to stabilize the on-board camera while rolling and

pitching, as seen in Figure 53, where the field of view becomes inaccurately distorted with incorrect

measurements of the position of the target. Compensation could be implemented using mechanical

compensation, where the on-board camera is mounted with a two degree-of-freedom gimbal which
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Figure 52: Arrangement for end-point closed-loop control through detection and tracking of a target.

isolates the on-board camera from the effects of rolling and pitching; or digital compensation, where

the image is slightly cropped to allow for virtual stabilisation [7]. Mechanical compensation will

retain the field of view while being faster without processing delays as compared to digital compens-

ation, so it is recommended for mechanical compensation to be used if compensation is required [7].

However, no compensation should first be adopted to judge if it is satisfactory.

Stationary Hover
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Target Camera
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Gimbal Compensation

Quadrotor
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View

Figure 53: Comparison between the changes in the field of view during extreme/exaggerated rolling

or pitching without (middle) and with (right) compensation as the target begins a motion.

E.2 BIGQUAD APPARATUS

For the quadrotor, the Crazyflie control board was mounted to a TransTEC Freedom frame, which has

diagonals of 215mm and is constructed from 3K carbon fibre with aluminium 7075 supports for the

shell and plastic bumpers at the rotor mounts to produce a mass of 116g. The electronic components

for the flight of the quadrotor include four EMAX Bullet 30A electronic speed controllers (ESCs),

with a mass of 4.9g, BB2 processor, current rating up to 30A, and support for DShot, Multishot, and

Oneshot protocols; four EMAX RSII 2206-1700KV rotor motors, with a mass of 26.7g and maximum

thrust up to 2040N/kg; four plastic propellers, with a mass of 4g and length of 127mm; and Tattu R-

line 75C LiPo battery with a mass of 160g, four cells in series, and capacity of 1300mA.hr at 14.8V.
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To facilitate the connection between the Crazyflie and ESCs, the Bitcraze BigQuad expansion deck

(subsequently referred to as BigQuad deck) will be used. This deck features breakout header con-

nectors for the four ESCs, where a voltage and ground will be supplied along with a PWM signal at

a default frequency of 400Hz to control the motors [30]. There are also additional breakout header

connectors for other accessories, such as a GPS receiver, battery voltage and current monitor, buzzer,

chaotic pulse position modulation (CPPM) receiver, or I2C communication protocol [30]. The con-

nections of the BigQuad deck are seen in Figure 54 with the final assembly seen in Figure 55.

Unfortunately, the BigQuad deck is not compatible with the Flow deck without modifying the firm-

ware and components of the hardware. As a result, the control and stabilisation is slightly more diffi-

cult and requires a different method based on measurements relative to the target detection. Moreover,

the original internal cascading PID controllers for attitude flight control of position and velocity are

tuned for the original frame, rotor motors, propellers, and battery, so it might be necessary to re-tune

the controller gain values if the flight is found to be unstable or unresponsive.
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Figure 54: Schematic (left) and photographs (right) showing the Bitcraze BigQuad expansion deck

and connections to the EMAX Bullet 30A ESCs and EMAX RSII 2206-1700KV rotor motors [31].
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Figure 55: Photographs showing the top isometric (left) and bottom isometric (right) views of the

larger quadrotor which was manually assembled, including the parts for visual servoing.
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